Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting information

Accelerating the discovery of energetic melt-castable materials by a high-throughput virtual screening and experimental approach

Siwei Song[⊥], Fang Chen[⊥], Yi Wang^{*}, Kangcai Wang, Mi Yan, Qinghua Zhang^{*}

Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, China

Table of content

Methods	S3-S9
Effect of side-chain length (carbon atom numbers) on the melting point of	f neutral and
ionic compounds	S10
Scatter plot of prediction value versus observation value and error dist	tribution for
detonation pressure (P) model	S11
Comparison of prediction accuracy for T _m models	S12
Property space represented by pair-grid plot	S13
Evaluation on feature importance for T _d models from random	forest (RF)
algorithm	S14
Searching the most potential molecules for synthetic endeavor from se	creened 136
candidates	S15-S17
Crystal packing structures of compounds MC-1 to MC-8	S18
Abbreviation and description for custom descriptors	S19
Predicted properties for screened 136 molecules	S20-S28
Single crystal X-ray diffraction data of MC-1	S29
Single crystal X-ray diffraction data of MC-2	S30
Single crystal X-ray diffraction data of MC-3	
Single crystal X-ray diffraction data of MC-4	
Single crystal X-ray diffraction data of MC-5	
Single crystal X-ray diffraction data of MC-6	S34
Single crystal X-ray diffraction data of MC-7	
Single crystal X-ray diffraction data of MC-8	S36
Physicochemical properties of synthesized compounds	
¹ H and ¹³ C NMR spectra for synthesized compound	S38-S45
References	46

Methods

1. Machine learning

We gathered more than 1000 data of energetic materials from literatures for training machine learning models covering density, detonation velocity, detonation pressure, melting point and decomposition temperature. To improve the accuracy of T_m models, non-energetic compounds (around 4500 samples) from Molmall database¹ was also involved. Features (molecular descriptors) including custom descriptors and Electrotopological fingerprint were extracted by RDkit library². Machine-learning models were trained by kernel ridge regression (KRR) algorithm implemented in Scikit-learn package³. In KRR algorithm, prediction value (y*) can be expressed as the weighted average (α) of inner product between the new sample (x^{*}) and training samples (x) given a kernel function (k) (1). Thus, the learning process is indeed calculating coefficient matrix (α) by equation (2), in which X, Y, λ and I are sample matrix, label matrix, regularization parameter and identity matrix, respectively. Hyperparameters including kernel function were tuned up by grid-search method and 5-fold cross-validation. Coefficient of determination (R²) was chosen as refit score (3). Apart from R², mean absolute error was also calculated for evaluating the model accuracy (4). Feature importance were acquired after training the T_m model by random forest algorithm in Scikit-learn.

$$y^{*} = \sum_{i=1}^{N} \alpha_{i} k(x^{*}, x_{i})$$
(1)

$$\alpha \triangleq (k(X, X^{T}) + \lambda I)^{-1}Y$$
^N
⁽²⁾

$$R^{2} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - y_{i}^{*})}{\sum_{i=1}^{N} (y_{i} - \bar{y})}$$
(3)

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - y_i^*|$$
(4)

2. Experimental

Caution! Though no accidental explosion happened in our preparing process, the compounds reported here are metastable substance that may be triggered by mechanical or chemical stimuli. Safety equipment such as protective gloves and coats, face shield and explosion-proof baffle are recommended.

Synthetic routes of compounds MC-1 to MC-8

Synthesis of 2-((1-methyl-3,5-dinitro-1H-pyrazol-4-yl) (nitro) amino) ethyl nitrate (MC-1):

4-(2'-hydroxyethyl)amino-3,5-dinitro-1-methylpyrazole: 1.0 g (4.9 mmol) 4-chloro-

1-methyl-3,5-dinitro-1H-pyrazole⁴ and 0.7g (11.5 mmol) ethanolamine were dissolved into 20 mL DMF, then the solution was stirred at 100 °C for 2 hours. Subsequently the reaction product was poured into ice, the precipitate filtered and recrystallized from ethanol to form yellow crystals, yield: 0.62 g (54.9 %).

2-((1-methyl-3,5-dinitro-1H-pyrazol-4-yl)(nitro)amino)ethyl nitrate: 0.5 g (2.2 mmol) 4-(2'-hydroxyethyl)amino-3,5-dinitro-1-methylpyrazole was added in portions into a mixture of 2 mL anhydrous dichloromethane, 1.5 mL fuming nitric acid and 1.3 mL acetic anhydride at 0 °C. After stirring for 3 hours, the reaction was quenched by 60 mL crashed ice and the milky solid is filtered out. The product was washed with water and dried at room temperature with a yield of 0.42 g (60.4%).¹H NMR (400 MHz, DMSO-d₆): δ ppm: 4.41 (br. s, 3H), 4.59 (br. s, 1H), 4.66 (br. s, 1H), 4.87 (br. s, 2H). ¹³C NMR (100 MHz, DMSO-d₆): δ ppm: 43.80, 50.78, 70.51, 111.81,141.26,146.04. IR (KBr, cm⁻¹):2908.80, 1650.58, 1603.12, 1530.69, 1443.79, 1417.24, 1338.43, 1270.74, 1146.08, 1123.49, 1020.92, 967.12, 888.12, 842.95, 784.82, 666.01, 491.64. Elemental analysis (%) calcd for MC-1: C 22.44, H 2.20, N 30.53; found: C 22.32, H 2.43, N 30.12.

Synthesis of (3-nitro-1H-pyrazol-1-yl) methyl nitrate (MC-2):

(3-nitro-1H-pyrazol-1-yl) methanol: 1.0 g (8.8 mmol) 3-nitro-1H-pyrazole was added to 30 mL water. Afterwards, 1.5 mL formaldehyde solution and three drops of concentrated hydrochloric acid were added to the reaction mixture. The solution gradually turned into clear and the reaction was stirred for another 48 h at room temperature. After extracted with ethyl acetate, vacuum distillation and dried in air to give (3-nitro-1H-pyrazol-1-yl) methanol as white solid, yield: 1.1 g (87.0%).

(3-nitro-1H-pyrazol-1-yl) methyl nitrate: 1.0g (7.0 mmol) (3-nitro-1H-pyrazol-1-yl) methanol was partially added into the stirred mixture of acetic anhydride (2.0 mL) and fuming nitric acid (1.0 mL) at 0 °C. After several hours, the reaction was quenched with ice water and the precipitate was filtered as white solid product, yield: 0.65g (49.4%). ¹H NMR (400 MHz, DMSO-d₆): δ ppm: 6.68 (br. s, 2H), 7.16 (br. s, 1H), 8.32 (br. s, 1H). ¹³C NMR (100 MHz, DMSO-d₆): δ ppm: 79.52, 103.99, 137.08, 157.26. IR (KBr, cm⁻¹):3156.53, 3135.78, 3058.16, 2937.50, 1666.44, 1556.89, 1512.59, 1383.56, 1306.21, 1288.73, 1235.66, 1181.74, 1047.87, 992.31, 956.1, 822.99, 792.63, 757.07, 656.40, 636.28, 446.06, 414.85. Elemental analysis (%) calcd for MC-2: C 25.54, H

2.14, N 29.79; found: C 25.78, H 1.92, N 29.43.

Synthesis of (3-nitro-1H-pyrazol-1-yl) methyl nitrate (MC-3): 1.6 g (10.0 mmol) 3,4-dinitro-1H-pyrazole⁵ was added into 20 mL of methanol. Afterwards, the equimolar amount of KOH and 18-Crown-6 were added to the reaction mixture and then 2.0g of 2-bromoethyl nitrate⁵ was added, the reaction was stirred for another 48 h at 80 °C. Then the product was extracted with ethyl acetate (3×40 mL) and purified by column chromatography (petroleum ether: ethyl acetate = 10:1) as slight yellow crystals, yield: 1.0 g (40.5%). ¹H NMR (400 MHz, DMSO-d₆): δ ppm: 4.71 (br. s, 2H), 4.98 (br. s, 2H) , 9.25 (br. s, 1H). ¹³C NMR (100 MHz, DMSO-d₆): δ ppm: 51.51, 70.88, 126.73, 135.16, 147.65. IR (KBr, cm⁻¹):3158.12, 2981.57, 2911.92, 2665.76, 2563.01, 1642.94, 1549.48, 1519.64, 1461.50, 1359.91, 1338.14, 1284.27, 1150.06, 1121.82, 1031.45, 904.86, 863.66, 809.81, 750.37, 715.03, 596.53, 574.10, 503.42, 455.13. Elemental analysis (%) calcd for MC-3: C 24.30, H 2.04, N 28.34; found: C 24.15, H 2.02, N 28.53.

Synthesis of (3,4-dinitro-1H-pyrazol-1-yl) methyl nitrate (MC-4):

(3,4-dinitro-1H-pyrazol-1-yl)methanol: 1.6 g (10.0 mmol) 3,4-dinitro-1H-pyrazole was added to 30 mL water. Afterwards, 1.4 ml formaldehyde solution and three drops of concentrated hydrochloric acid were added to the reaction mixture. The solution gradually turned into clear and the reaction was stirred for another 48 h at room temperature. After extracted with ethyl acetate, vacuum distillation and dried in air to give (3,4-dinitro-1H-pyrazol-1-yl)methanol as pale yellow liquid, yield: 1.49 g (79.0%).

(3,4-dinitro-1H-pyrazol-1-yl) methyl nitrate: 1.4 g (7.5 mmol) (3,4-dinitro-1Hpyrazol-1-yl)methanol was partially added into the stirred mixture of acetic anhydride (2 mL) and fuming nitric acid (1.0 mL) at 0 °C. After 5 hours, the reaction was quenched with ice water and the precipitate was filtered as white solid product, yield: 1.2 g (68.7%). ¹H NMR (400 MHz, DMSO-d₆): δ ppm: 6.65 (br. s, 2H), 9.40 (br. s, 1H). ¹³C NMR (100 MHz, DMSO-d₆): δ ppm:79.30, 127.48, 136.73, 148.52. IR (KBr, cm⁻¹):3168.09, 3156.11, 3064.82, 3006.94, 2934.07, 1663.21, 1649.55, 1560.86, 1525.86, 1462.55, 1365.90, 1312.85, 1285.78, 1236.99, 1148.24, 1121.16, 971.17, 864.45, 837.53, 809.80, 768.07, 662.61, 624.08, 584.54, 496.97. Elemental analysis (%) calcd for MC-4: C 20.61, H 1.30, N 30.05; found: C 20.41, H 1.46, N 29.95.

Synthesis of 2-(4-methoxy-3,5-dinitro-1H-pyrazol-1-yl) ethyl nitrate (MC-5)

4-methoxy-3,5-dinitro-1H-pyrazole: 1.0 g (10.2 mmol) 4-methoxy-1H-pyrazole was dissolved into 2mL 98% concentrated sulfuric acid at 0 °C, then 1 mL 68% concentrated nitric acid were slowly added into above solution. After 5 hours, the reaction was quenched with ice water and the precipitate was filtered as white solid product, yield: 1.8 g (96.0%).

2-(4-methoxy-3,5-dinitro-1H-pyrazol-1-yl) ethyl nitrate: 0.5 g (2.7 mmol) 4methoxy-3,5-dinitro-1H-pyrazole was added into 20 mL of methanol. Afterwards, the equimolar amount of KOH and 18-Crown-6 were added to the reaction mixture and then 0.6 g of 2-bromoethyl nitrate⁶ was added, the reaction was stirred for another 48 h at 80 °C. Then the product was extracted with ethyl acetate (3×40 mL) and purified by column chromatography (petroleum ether: ethyl acetate = 12:1) as white crystals, yield: 0.22 g (30.3%). ¹H NMR (400 MHz, DMSO-d₆): δ ppm: 4.01(br. s, 3H), 4.99 (br. s, 2H) , 5.01 (br. s, 2H). ¹³C NMR (100 MHz, DMSO-d₆): δ ppm: 52.64, 63.72, 70.69, 135.96, 138.56, 144.80. IR (KBr, cm⁻¹):3052.54, 3003.29, 2949.44, 1647.63, 1610.54, 1533.41, 1451.09, 1334.12, 1284.12, 1233.20, 1115.43, 1073.24, 1003.68, 981.16, 959.01, 888.76, 850.65, 766.59, 683.39, 594.00, 525.79, 451.88. Elemental analysis (%) calcd for MC-5: C 26.00, H 2.55, N 25.27; found: C 26.17, H 2.68, N 25.04.

Synthesis of (4-methyl-3,5-dinitro-1H-pyrazol-1-yl) methyl nitrate (MC-6):

(4-methyl-3,5-dinitro-1H-pyrazol-1-yl)methanol: 1.0 g (5.8 mmol) 4-methyl-3,5dinitro-1H-pyrazole⁷ was as added to 30 mL water. Afterwards, 1.4 ml formaldehyde solution and three drops of concentrated hydrochloric acid were added to the reaction mixture. The reaction was stirred for another 48 h at room temperature. After extracted with ethyl acetate, vacuum distillation and dried in air to (4-methyl-3,5-dinitro-1Hpyrazol-1-yl)methanol as white solid, yield: 0.88 g (75.2%).

(4-methyl-3,5-dinitro-1H-pyrazol-1-yl) methyl nitrate: 1.0 g (4.9 mmol) (4-methyl-3,5-dinitro-1H-pyrazol-1-yl)methanol was partially added into the stirred mixture of acetic anhydride (2.5 mL) and fuming nitric acid (1.0 mL) at 0 °C. After 3 hours, the

reaction was quenched with ice water and the product was separated by column chromatography (petroleum ether: ethyl acetate =10:1) as white solid, yield: 0.75 g (61.5%). ¹H NMR (400 MHz, DMSO-d₆): δ ppm: 2.56 (br. s, 3H), 6.90 (br. s, 2H). ¹³C NMR (100 MHz, DMSO-d₆): δ ppm: 10.10, 79.17, 115.96, 144.64, 152.71. IR (KBr, cm⁻¹):3059.36, 2940.07, 1698.87, 1671.33, 1596.81, 1540.15, 1435.60, 1415.17, 1358.62, 1333.30, 1279.56, 1109.01, 1029.79, 971.84, 879.96, 818.93, 790.46, 637.19. Elemental analysis (%) calcd for MC-6: C 24.30, H 2.04, N 28.34; found: C 24.46, H 2.23, N 28.02.

Synthesis of (4-methoxy-3,5-dinitro-1H-pyrazol-1-yl) methyl nitrate (MC-7):

(4-methoxy-3,5-dinitro-1H-pyrazol-1-yl) methanol: 1.0 g (5.3 mmol) 4-methoxy-3,5-dinitro-1H-pyrazole was added to 20 mL water. Afterwards, 1 mL formaldehyde solution and three drops of concentrated hydrochloric acid were added to the reaction mixture. The reaction was stirred for 48 h at 80 °C. After extracted with ethyl acetate, vacuum distillation and dried in air to give (4-methoxy-3,5-dinitro-1H-pyrazol-1-yl) methanol as pale yellow solid, yield: 0.5 g (43.1%).

(4-methoxy-3,5-dinitro-1H-pyrazol-1-yl) methyl nitrate: 1.0 g (4.6 mmol) (4methoxy-3,5-dinitro-1H-pyrazol-1-yl) methanol was partially added into the stirred mixture of acetic anhydride (2.5 mL) and fuming nitric acid (1.0 mL) at 0 °C. After 3 hours, the reaction was quenched with ice water and the product was separated by column chromatography (petroleum ether: ethyl acetate = 6:1) as white solid, yield: 1.1 g (91%). ¹H NMR (400 MHz, DMSO-d₆): δ ppm: 4.03 (br. s, 3H), 6.86 (br. s, 2H). ¹³C NMR (100 MHz, DMSO-d₆): δ ppm: 63.84, 79.62, 136.24, 138.42, 146.13. IR (KBr, cm⁻¹):3073.25, 3009.63, 2943.11, 1669.05, 1609.15, 1529.19, 1459.34, 1336.41, 1284.12, 1255.04, 1054.60, 980.20, 899.35, 837.33, 791.82, 748.23, 683.56, 634.03, 526.17. Elemental analysis (%) calcd for MC-7: C 22.82, H 1.92, N 26.62; found: C 22.51, H 2.03, N 26.33.

Synthesis of (4-nitro-1H -imidazol-1-yl) methyl nitrate (MC-8):

(4-nitro-1H-imidazol-1-yl) methanol: 1.5 g (13.3 mmol) 4-nitro-1H-imidazole was added to 45 mL water. Afterwards, 2 mLformaldehyde solution and three drops of concentrated hydrochloric acid were added to the reaction mixture. The reaction was

stirred for 48 h at 80°C. After extracted with ethyl acetate, vacuum distillation and dried in air to give (4-nitro-1H-imidazol-1-yl) methanol as white solid, yield: 0.8 g (42.1%). (4-nitro-1H-imidazol-1-yl) methyl nitrate: 1.0 g (7.0 mmol) (4-nitro-1H-imidazol-1yl) methanol was partially added into the stirred mixture of acetic anhydride (2.0 mL) and fuming nitric acid (1.0 mL) at 0 °C. After 4 hours, the reaction was quenched with ice water and the product was separated by column chromatography (petroleum ether: ethyl acetate = 4:1) as white solid, yield: 0.71 g (54.0 %). ¹H NMR (400 MHz, DMSOd₆): δ ppm: 6.55 (br. s, 2H), 8.14 (br. s, 1H), 8.59 (br. s, 1H). ¹³C NMR (100 MHz, DMSO-d₆): δ ppm: 75.34, 122.30, 138.95, 147.89. IR (KBr, cm⁻¹):3148.88, 3081.38, 3052.08, 2932.60, 2767.18, 1663.41, 1546.33, 1493.96, 1432.49, 1379.15, 1358.29, 1289.46, 1228.69, 1146.16, 1042.31, 985.64, 964.25, 880.39, 822.03, 755.00, 655.67, 616.89, 587.28, 454.11, 411.02. Elemental analysis (%) calcd for MC-8: C 25.54, H 2.14, N 29.79; found: C 25.75, H 2.31, N 29.43.

Characterization

¹H and ¹³C spectra were collected on a Bruker Avance Neo 400 NMR spectrometer operating at 400 and 100 MHz, respectively. Infrared (IR) spectra were recorded using a Bruker FTIR instrument with KBr pellets (4000-500 cm⁻¹). Elemental analysis was performed on a varioMICRO cube elemental analyzer. Impact and friction sensitivity measurements were launched using a standard BAM Fall hammer and a BAM friction tester. Single crystal X-ray diffraction data was collected on a XtaLAB diffractometer with Cu-K α monochromated radiation (λ =1.54178 Å). The crystal structures were solved by direct methods. The structures were refined on F2 by full-matrix least-squares methods using the SHELXTL script package⁸. All non-hydrogen atoms were refined anisotropically. The thermal properties of compounds were measured by METLLER TOLEDO 2 TGA/DSC synchronous thermal analyzer at a heating rate of 10 °C min⁻¹. The heat of formation of compound was calculated by Gaussian09 (RevD.01) program9.

The standard detonation properties were calculated by Explo5 (version 6.02) software.

Figure S1. Effect of side-chain length (carbon atom numbers) on the melting point of neutral and ionic compounds.

As shown in Figure S1, no matter the compounds are neutral and ionic, there is a general rule that the melt points decrease with increasing side-chain length. Therefore, we think it will be an effective way to introduce some reasonable flexible alkyl chains for developing new energetic melt-castable materials.

Figure S2. Scatter plot of prediction value versus observation value and error distribution for detonation pressure (P) model.

The R2 and MAE of P model on test set are 0.82, 2.379 GPa, respectively. Considering the strong correlation between Dv and P (0.97, Figure S4) and convenient layout, this figure was showed separately in supporting information.

Figure S3. Comparison of prediction accuracy for $T_{\rm m}$ models.

In Figure S3, we compared our T_m model with some reported results¹⁰⁻¹⁵. Our model has reached to a desirable accuracy.

Figure S4. Property space represented by pair-grid plot.

The diagonal is the sample distribution histogram, the upper and lower off-diagonal are kernel density estimation (KDE) plot (R is the correlation coefficient) and scatter plot that reveal the correlations between different properties. From the diagonal, we can see that the property space is complete and reasonable, since it covers large property range that could provide enough potential molecule for screening. In KDE and scatter plot we can see strong positive correlation between Density and D_v (or *P*) because R is larger than 0.97. Meanwhile, T_d shows a negative correlation with Density (R = -0.63), D_v (R = -0.59) and *P* (R = -0.64). The phenomenon is accordance with our common sense that density can evidently impact the energy of energetic material and the thermal stability usually decreases as the energy increases. It must be noted that the property models are mutually independently trained. These results prove that the trained property models are convinced since the knowledge revealed in the models obeys our chemical intuition.

Figure S5. Evaluation on feature importance for T_d models from random forest (RF) algorithm.

For T_d model, features correlated with molecular stability such as ob (oxygen balance) and nC(NO2) (number of C(NO2) groups) are more weighted with the values of 11.50% and 5.93%, respectively. Since high ob and more nC(NO2) usually indicates the poor thermal stability of compound, thus we think their high importance in features are reasonable. Detailed comparative analysis on the feature importance of T_m (Figure 3B) and T_d models (Figure S5), we can find that the feature importance for T_d and T_m models are quietly different. In addition, this variance also demonstrates the necessity and reliability of custom descriptor set in unrevealing the pattern in different property data.

Figure S6. Searching the most potential molecules for synthetic endeavor from screened 136 candidates

As shown in Figure S6, the screened 136 molecules can be classified into 24 groups from the view of structural isomer. Based on the predicted results of ML models, we can find that the main properties of (including density, Dv, P, Tm and Td) different structural isomers are very close (Table S2). We think that it would be reasonable to select one or two molecules in every structural isomer group for experimental verifications. Thus, the molecules valuable for synthetic endeavor can be narrowed to around 40 from original 136. Considering the reported molecules (such as Group 7 and Group 8) and difficulty of introducing multiple alkyl nitric esters in a molecular skeleton (such as Group 1, 2 and 3, *etc.*), we think that the red star-marked twelve molecules are the most valuable to experimentally synthesize and verify.

Group 10 (Molecular formula: H₄C₄N₄O₄)

Group 12 (Molecular formula: $H_4C_5N_6O_{10}$)

Group 14 (Molecular formula: H₅C₄N₅O₅)

Group 11 (Molecular formula: H₄C₄N₄O₅)

Group 15 (Molecular formula: H₅C₅N₅O₇)

Group 18 (Molecular formula: H₇C₆N₅O₇)

- Neo

Group 19 (Molecular formula: H₇C₆N₅O₈)

Group 20 (Molecular formula: H₇C₆N₇O₁₀)

Group 21 (Molecular formula: H₇C₆N₇O₉)

0=1

Group 22 (Molecular formula: H₈C₇N₆O₁₀)

Group 23 (Molecular formula: H₈C₇N₆O₁₁)

0

Group 24 (Molecular formula: H₉C₇N₇O₁₀)

Figure S7. Crystal packing structures of compounds MC-1 to MC-8.

Slow solvent evaporation of dichloromethane solution (MC-3 and MC-8) or ethyl acetate solutions (MC-1, MC-2, MC-4, MC-5, MC-6 and MC-7) at room temperature, we obtained the single crystals of MC-1 to MC-8 and their crystal packing structures are shown in Figure S7. Through analyzing their crystal structures, we find that they usually take mix-crossed crystal packing modes and lack strong hydrogen-bond interactions.

Abbreviation	Description	Abbreviation	Description
nUbandA	Number of hydrogen	nII	Number of hydrogen
IIIDOIIdA	bond acceptor	ШП	atom
nUhandD	Number of hydrogen	nC	Number of earbon stom
IIHOOIIdD	bond donor	IIC	Number of carbon atom
nNH2	Number of amino	nN	Number of nitrogen stom
111112	group	111 N	Number of introgen atom
nAHC	Number of aromatic	nO	Number of oxygon stom
liAnc	heterocycle	IIO	Number of oxygen atom
nACC	Number of aromatic	DBE	Plane of best fit
IIACC	carbocycle	I DI	T fance of best fit
nRhond	Number of rotatable	ΤΡς Δ	Topological polar surface
incoond	bond	IISA	area
nR	Number of ring	ob	Oxygen balance
nNNO2	Number of nitramine	Molecular	Molecular weight
1111102	group	weight	Wolecular weight
nC(NO2)3	Number of nitroform	PM13	Principal moments of
110(1102)5	group	1 14115	inertia 3
nC(NO2)2	Number of dinitro	nCH3	Number of methyl group
	group	nem	Tumber of methyl group
nC(NO2)	Number of nitro	nOCH3	Number of methoxy
	group	noens	group
MinPartialCharge	Minimum value of	NPR 1	Normalized principal
winn artiarcharge	partial charge	NI KI	moments ratios 1
MaxPartialCharge	Maximum value of	NPR 2	Normalized principal
	partial charge	111 112	moments ratios 2
MOLvolume	Molecular volume		

Table S1. Abbreviation and description for custom descriptors

SMILES	Formula	Density	Dv	Р	Tm	Td
O=[N+]([O-						
])OCn1c([N+](=O)[O-						
])nc([N+](=O)[O-	H2C4N6O9	1.866	8.830	35.634	104.105	196.881
])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCn1nc([N+](=O)[O-		1 0 60	0.011		~~~~~	10- ((0
])c([N+](=O)[O-	H2C4N6O9	1.860	8.811	35.376	99.729	197.668
])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCc1c([N+](=O)[O-		1 902	0 170	22 570	102 002	105 220
])nc([N+](=O)[O-	H4C3N0010	1.805	0.4/0	52.570	102.992	195.559
])n1CO[N+](=O)[O-]						
O=[N+]([O-						
])OCc1c([N+](=O)[O-		1 201	0 175	22.206	07.074	100 009
])c([N+](=O)[O-	H4C3N0010	1.801	8.473	52.580	97.074	190.008
])nn1CO[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1c([N+](=O)[O-	H4C5N6O9	1 800	8 183	32 123	102 242	203 337
])nc([N+](=O)[O-	H4C5N609	1.800	0.405	5.465 52.125	102.242	203.337
])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCn1c([N+](=O)[O-	H3C4N5O7	1.778	8.440	31.892	102.847	213.572
])cnc1[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1nc([N+](=O)[O-	H4C5N6O9	1 791	8 478	31 746	100 810	202 646
])c([N+](=O)[O-	meenooy	1.,91	0.170	51.710	100.010	202.010
])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCn1ncc([N+](=O)[O-	H3C4N5O7	1.781	8.484	31.595	100.351	202.168
])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCn1nc([N+](=O)[O-	H3C4N5O7	1.779	8.472	31.538	98.789	209.626
])cc1[N+](=O)[O-]						
O=[N+]([O-						
])OCn1cnc([N+](=O)[O-	H3C4N5O7	1.784	8.475	31.497	103.558	198.187
])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCn1cc([N+](=O)[O-	H3C4N5O7	1.778	8.457	31.420	101.952	209.308
])nc1[N+](=O)[O-]						
O=[N+]([O-						
])OCn1cc([N+](=O)[O-	H3C4N5O7	1.783	8.515	31.339	98.713	199.223
])c([N+](=O)[O-])n1						

Table S2. Predicted properties for screened 136 molecules

Cn1nc([N+](=O)[O-])c([N+](=O)[O-	H3C4N5O6	1 760	8 330	30 597	109 334	212 287
)c([N+](=O)[O-]	1150-11500	1.700	0.550	50.577	107.554	212.207
O=[N+]([O-						
])OCCN(c1c([N+](=O)[O-	1170017010	1 744	0 011	20.000	00 (20	102 522
])cnn1CO[N+](=O)[O-	H/C6N/010	1./44	8.211	30.000	99.639	193.533
])[N+](=O)[O-]						
O=[N+]([O-						
])OCCN(c1cc([N+](=O)[O-	U7C(NI7O10	1 726	9 196	20.770	109 (55	202 215
])nn1CO[N+](=O)[O-	H/CoN/010	1./30	8.180	29.119	108.033	205.215
])[N+](=O)[O-]						
Cn1nc([N+](=O)[O-	H3C3N5O4	1 731	8 3 2 0	20 667	100 758	105 780
])nc1[N+](=O)[O-]	1150511504	1.731	8.329	29.007	100.758	195.780
O=[N+]([O-						
])OCCn1nc(CO[N+](=O)[O	H6C6N6O10	1 752	8 184	29 597	91 577	191 370
-])c([N+](=O)[O-	1100010	1.752	0.104	27.371)1.577	171.570
])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCCc1nn(CO[N+](=O)[O	H6C6N6O10	1 751	8 240	29 557	92 384	191 807
-])c([N+](=O)[O-	11000110	1.,01		29.001	,2.001	171.007
])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCCc1c([N+](=O)[O-	H6C6N6O10	1.748	8.173	29.539	100.161	199.591
])nc([N+](=O)[O-	11000110010	1., 10	0.170	_,,	1001101	177.071
])n1CO[N+](=O)[O-]						
O=[N+]([O-						
])OCCc1nc([N+](=O)[O-	H6C6N6O10	1.749	8.188	29.467	91.362	191.684
])c([N+](=O)[O-						
])n1CO[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1c([N+](=O)[O-	H6C6N6O10	1.745	8.220	29.465	92.916	194.196
])nc(CO[N+](=O)[O-						
])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1c([N+](=O)[O-	H6C6N6O10	1.745	8.158	29.430	98.631	197.038
J)nc([N+](=O)[O-						
])c1CO[N+](=O)[O-]						
Cnlc([N+](=O)[O-	H3C3N5O4	1.727	8.346	29.377	104.266	198.593
])nnc1[N+](=O)[O-]						
CnInnc([N+](=O)[O-	H3C3N5O4	1.708	8.299	29.374	88.674	190.227
])C1[N+](=U)[U-]						
U=[N+]([U-1)(-1)(-1)(-1)(-1))	HICOLO10	1 7 4 7	0 175	20.227	00 (05	100.000
$\int (D + 1) = O = O$	H0C6N6O10	1./4/	8.1/5	29.327	90.695	190.909
])c([N+](=U)[U-						

])c1CO[N+](=O)[O-]						
Cn1nc([N+](=O)[O-						
])c(N(CCO[N+](=O)[O-		1 715	0 011	20.222	105 555	107 249
])[N+](=O)[O-	H/Con/09	1./15	8.211	29.233	105.555	197.348
])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1c(CO[N+](=O)[O-		1 7 4 4	0.177	20.17(02 577	105 004
])nc([N+](=O)[O-	H6C6N6O10	1./44	8.1//	29.176	93.577	195.804
])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCCc1c([N+](=O)[O-		1 740	0.165	20.115	07 (02	201 200
])c([N+](=O)[O-	HOCONOULO	1./42	8.105	29.115	97.083	201.388
])nn1CO[N+](=O)[O-]						
O=[N+]([O-						
])OCc1cc([N+](=O)[O-	H5C5N5O8	1.721	8.122	28.763	91.061	194.796
])nn1CO[N+](=O)[O-]						
COc1nn(CO[N+](=O)[O-						
])c([N+](=O)[O-	H5C5N5O8	1.728	7.932	28.722	97.608	191.842
])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCc1cnc([N+](=O)[O-	H5C5N5O8	1.718	8.137	28.720	91.283	195.671
])n1CO[N+](=O)[O-]						
O=[N+]([O-						
])OCCc1nc([N+](=O)[O-						
])n(CO[N+](=O)[O-	H10C8N8O13	1.720	8.017	28.696	99.772	193.115
])c1N(CCO[N+](=O)[O-						
])[N+](=O)[O-]						
COc1c([N+](=O)[O-						
])nc([N+](=O)[O-	H5C5N5O8	1.727	7.919	28.624	98.029	191.998
])n1CO[N+](=O)[O-]						
O=[N+]([O-						
])OCc1ncc([N+](=O)[O-	H5C5N5O8	1.722	8.156	28.610	89.568	195.407
])n1CO[N+](=O)[O-]						
O=[N+]([O-						
])OCc1nc([N+](=O)[O-	H5C5N5O8	1.724	8.138	28.545	87.497	190.220
])cn1CO[N+](=O)[O-]						
O=[N+]([O-						
])OCc1c([N+](=O)[O-	H5C5N5O8	1.720	8.124	28.514	91.190	199.945
])cnn1CO[N+](=O)[O-]						
COc1c([N+](=O)[O-						
])nn(CO[N+](=O)[O-	H5C5N5O8	1.721	7.957	28.415	97.658	195.295
])c1[N+](=O)[O-]						
COc1c([N+](=O)[O-	H5C5N5O8	1 721	7 906	28 395	97 212	191 918
])c([N+](=O)[O-	1150511500	1./21	1.700	20.375	11.414	171.710

])nn1CO[N+](=O)[O-]						
Cc1c([N+](=O)[O-						
])nn(CO[N+](=O)[O-	H5C5N5O7	1.711	8.149	28.285	100.273	204.154
])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCc1c([N+](=O)[O-	H5C5N5O8	1.716	8.138	28.267	89.497	194.505
])ncn1CO[N+](=O)[O-]						
Cc1nn(CO[N+](=O)[O-						
])c([N+](=O)[O-	H5C5N5O7	1.710	8.118	28.254	104.451	203.091
])c1[N+](=O)[O-]						
Cn1c([N+](=O)[O-						
])nc(CO[N+](=O)[O-	H5C5N5O7	1.710	8.066	28.217	104.712	202.848
])c1[N+](=O)[O-]						
Cc1c([N+](=O)[O-						
])nc([N+](=O)[O-	H5C5N5O7	1.710	8.084	28.184	106.861	205.651
])n1CO[N+](=O)[O-]						
Cc1nc([N+](=O)[O-						
])n(CO[N+](=O)[O-	H5C5N5O7	1.694	8.047	28.124	104.996	215.099
])c1[N+](=O)[O-]						
Cn1nc([N+](=O)[O-						
])c(CO[N+](=O)[O-	H5C5N5O7	1.700	8.036	28.061	102.881	204.506
])c1[N+](=O)[O-]						
Cn1nc(CO[N+](=O)[O-						
])c([N+](=O)[O-	H5C5N5O7	1.707	8.074	28.048	101.412	202.259
])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1c([N+](=O)[O-	H5C5N5O7	1.714	8.085	28.010	95.362	216.219
])cnc1[N+](=O)[O-]						
Cn1c(CO[N+](=O)[O-						
])nc([N+](=O)[O-	H5C5N5O7	1.711	8.073	27.981	105.202	200.984
])c1[N+](=O)[O-]						
Cn1c([N+](=O)[O-						
])nc([N+](=O)[O-	H5C5N5O7	1.707	8.061	27.966	105.074	204.169
])c1CO[N+](=O)[O-]						
Cc1nc([N+](=O)[O-						
])c([N+](=O)[O-	H5C5N5O7	1.700	8.084	27.929	101.687	203.571
])n1CO[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1nc([N+](=O)[O-	H5C5N5O7	1.718	8.106	27.860	96.815	212.151
])cc1[N+](=O)[O-]						
Cn1nc([N+](=O)[O-						
])c([N+](=O)[O-	H5C5N5O7	1.704	8.071	27.819	103.782	201.281
])c1CO[N+](=O)[O-]						
Cc1c([N+](=O)[O-	H5C5N5O7	1.700	8.076	27.814	102.011	204.387

])c([N+](=O)[O-						
])nn1CO[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1ncc([N+](=O)[O-	H5C5N5O7	1.715	8.123	27.692	104.783	208.299
])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1cc([N+](=O)[O-	H5C5N5O7	1.716	8.098	27.516	95.159	206.668
])c([N+](=O)[O-])n1						
O=[N+]([O-						
])OCCn1cc([N+](=O)[O-	H5C5N5O7	1.708	8.077	27.502	99.154	215.930
])nc1[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1cnc([N+](=O)[O-	H5C5N5O7	1.711	8.101	27.492	103.421	205.910
])c1[N+](=O)[O-]						
Cc1nc([N+](=O)[O-						
])n(CO[N+](=O)[O-	H9C7N7O10	1 673	7 924	27 421	101 513	194 376
])c1N(CCO[N+](=O)[O-	11)0/10/010	1.075	1.521	27.121	101.010	171.570
])[N+](=O)[O-]						
Cn1nc(CO[N+](=O)[O-						
])c(N(CCO[N+](=O)[O-	H9C7N7O10	1 675	7 921	27 124	101 984	192.273
])[N+](=O)[O-	11)0/10/010	1.070	1.721	27.121	101.901	172.275
])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCCc1c(CO[N+](=O)[O-	H8C7N6O11	1 703	7 931	27 047	89 291	190 545
])nc([N+](=O)[O-	1100/110011	11,00	,	_,,	07.271	170.010
])n1CO[N+](=O)[O-]						
Cn1c([N+](=O)[O-						
])nc(CO[N+](=O)[O-	H9C7N7O10	1.671	7.901	26.983	103.741	194.211
])c1N(CCO[N+](=O)[O-						-,
])[N+](=O)[O-]						
CN(c1c(CCO[N+](=O)[O-						
])nc([N+](=O)[O-	H9C7N7O10	1.674	7.941	26.958	101.358	191.823
])n1CO[N+](=O)[O-	11,011,010	1.071	,.,	20.700	1011000	171.020
])[N+](=O)[O-]						
O=[N+]([O-						
])OCCN(c1nc([N+](=O)[O-	H9C7N7O10	1 685	7 913	26 914	100 063	197 495
])cn1CCO[N+](=O)[O-						
])[N+](=O)[O-]						
O=[N+]([O-	H4C4N4O5	1.679	7.990	26.902	79.611	209.231
])OCn1nccc1[N+](=O)[O-]		1.075	,	20.902	731011	207.201
O=[N+]([O-						
])OCCN(c1c([N+](=O)[O-	H9C7N7O10	1 686	7,887	26 882	98 377	194 674
])ncn1CCO[N+](=O)[O-		1.000		20.002	20.011	12
])[N+](=O)[O-]						

O=[N+]([O-])OCCN(c1nn(CCO[N+](= O)[O-])cc1[N+](=O)[O-])[N+](=O)[O-]	H9C7N7O10	1.694	7.888	26.834	100.045	192.068
O=[N+]([O-])OCCN(c1cc([N+](=O)[O-])nn1CCO[N+](=O)[O-])[N+](=O)[O-]	H9C7N7O10	1.685	7.877	26.794	108.303	206.845
O=[N+]([O-])OCn1ccnc1[N+](=O)[O-]	H4C4N4O5	1.678	7.970	26.775	79.835	208.334
O=[N+]([O-])OCCc1c([N+](=O)[O-])nn(CCO[N+](=O)[O-])c1[N+](=O)[O-]	H8C7N6O10	1.700	7.956	26.708	91.380	196.640
O=[N+]([O-])OCn1cncc1[N+](=O)[O-]	H4C4N4O5	1.679	7.978	26.704	81.298	210.710
O=[N+]([O-])OCCc1nc([N+](=O)[O-])n(CCO[N+](=O)[O-])c1[N+](=O)[O-]	H8C7N6O10	1.698	7.960	26.699	90.687	196.590
COc1noc([N+](=O)[O-])n1	H3C3N3O4	1.690	7.779	26.674	62.822	195.691
COc1nc([N+](=O)[O-])no1	H3C3N3O4	1.690	7.778	26.665	63.047	195.930
COc1nnc([N+](=O)[O-])o1	H3C3N3O4	1.691	7.776	26.658	61.105	195.125
O=[N+]([O-])OCCc1nn(CCO[N+](=O)[O-])c([N+](=O)[O-])c1[N+](=O)[O-]	H8C7N6O10	1.698	7.930	26.577	89.798	198.182
O=[N+]([O-])OCCc1c([N+](=O)[O-])nc([N+](=O)[O-])n1CCO[N+](=O)[O-]	H8C7N6O10	1.693	7.860	26.507	100.021	208.984
O=[N+]([O-])OCn1ccc([N+](=O)[O-])n1	H4C4N4O5	1.683	7.996	26.422	89.714	205.057
O=[N+]([O-])OCn1cc([N+](=O)[O-])cn1	H4C4N4O5	1.678	8.007	26.404	88.575	203.188
O=[N+]([O-])OCCc1c([N+](=O)[O-])nn(CCO[N+](=O)[O-])c1N(CCO[N+](=O)[O-])[N+](=O)[O-]	H12C9N8O13	1.684	7.784	26.398	97.663	194.305
Cn1c(CO[N+](=O)[O-])nnc1[N+](=O)[O-]	H5C4N5O5	1.670	8.011	26.383	92.358	191.837

O=[N+]([O-1)OCCc1nc([N+](=O)[O-1)OCCc1nc([N+](=O)[O-1)OCCc1nc([N+](=O)[O-1)OCCc1nc([N+](=O)[O-1)OCCc1nc([N+](=O)[O-1)OCCc1nc([N+](=O)[O-1)OCCc1nc([N+](=O)[O-1)OCCc1nc([N+](=O)[O-1)OCCc1nc([N+](=O)[O-1)OCCc1nc([N+](=O)[O-1)OCCc1nc([N+](=O)[O-1)OCCc1nc([N+](=O)[O-1)OCCc1nc([N+](=O)[O-1)OCCc1nc([N+](=O)[O-1)OCCc1nc([N+](=O)[O-1)OCCc1nc([N+](=O)[O-1)OCCCC1nC([N+](=O)[O-1)OCCCC1nC([N+](=O)[O-1)OCCCC1nC([N+](=O)[O-1)OCCCC1nC([N+](=O)[O-1)OCCCC1nC([N+](=O)[O-1)OCCCC1nC([N+](=O)[O-1)OCCCC1nC([N+](=O)[O-1)OCCCC1nC([N+](=O)[O-1)OCCCC1nC([N+](=O)[O-1)OCCCC1nC([N+](=O)[O-1)OCCCC1nC([N+](=O)[O-1)OCCCC1nC([N+](=O)[O-1)OCCCC1nC([N+](=O)[O-1)OCCCC1NC([N+](=O)[O-1)OCCCC1NC([N+](=O)[O-1)OCCCCC1NC([N+](=O)[O-1)OCCCCCCC[N]([N+](=O)[O-1)OCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC						
))c([N+](=0)[0-	H8C7N6O10	1.691	7.835	26.376	95.968	203.234
1)n1CCO[N+1(=0)[0-1]						
$\frac{\partial - [I]}{\partial CCc^{1}c([N]+](=0)[O]}$						
	H8C7N6O10	1.690	7.828	26.355	95.445	203.173
$\frac{1}{2} \int (\frac{1}{1} - \frac{1}{2}) \int (\frac{1}{1} -$						
0 = [1(+)]([0 = -1))(01)						
$\frac{1}{2} = \frac{1}{2} = \frac{1}$	H12C0N8O13	1 681	7 787	26.053	05 768	100 203
J/(N(CCO[N+](-O)[O-	111209118015	1.081	1.101	20.055	95.708	190.295
J)[N+](-0)[0-						
])n1CCO[N+](=O)[O-]						
CnInc(CO[N+](=O)[O-	H5C4N5O5	1.658	8.030	26.048	91.916	190.090
])nc1[N+](=O)[O-]						
O=[N+]([O-		4 (72)				
])OCn1cnc([N+](=O)[O-	H4C4N4O5	1.673	7.988	26.034	92.825	205.005
CcInc(CO[N+](=O)[O-					0 4 60 0	100 0 (1
])n(CO[N+](=O)[O-	H7C6N5O8	1.657	7.811	26.023	94.629	190.261
])c1[N+](=O)[O-]						
Cclnn(CO[N+](=O)[O-						
])c(CO[N+](=O)[O-	H7C6N5O8	1.655	7.813	25.851	92.305	190.073
])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1ncnc1[N+](=O)[O	H5C4N5O5	1.662	8.026	25.801	76.154	190.085
-]						
Cc1c(CO[N+](=O)[O-						
])nn(CO[N+](=O)[O-	H7C6N5O8	1.657	7.875	25.778	93.768	193.143
])c1[N+](=O)[O-]						
Cc1nc([N+](=O)[O-						
])n(CO[N+](=O)[O-	H7C6N5O8	1.653	7.852	25.771	91.628	192.248
])c1CO[N+](=O)[O-]						
Cc1c([N+](=O)[O-						
])nn(CO[N+](=O)[O-	H7C6N5O8	1.653	7.817	25.749	96.078	192.642
])c1CO[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1cnnc1[N+](=O)[O	H5C4N5O5	1.662	8.005	25.705	76.320	190.189
-]						
O=[N+]([O-						
])OCCc1cnc([N+](=O)[O-	H7C6N5O8	1.671	7.825	25.591	80.123	192.996
])n1CO[N+](=O)[O-]						
Cn1nc([N+](=O)[O-	HACANAOA	1 666	7 840	25 502	107 722	736 567
])cc1[N+](=O)[O-]	1170411404	1.000	1.047	23.303	107.723	230.302

O=[N+]([O-						
])OCCc1cc([N+](=O)[O-	H7C6N5O8	1.669	7.873	25.485	85.275	193.512
])n(CO[N+](=O)[O-])n1						
Cc1c(CO[N+](=O)[O-						
])nc([N+](=O)[O-	H7C6N5O8	1.652	7.861	25.478	93.683	192.288
])n1CO[N+](=O)[O-]						
Cn1cc([N+](=O)[O-	1140401404	1 (())	7.025	25 444	100 456	227 205
])nc1[N+](=O)[O-]	H4C4N4O4	1.664	7.825	25.466	109.456	237.285
O=[N+]([O-						
])OCCc1c([N+](=O)[O-	H7C6N5O8	1.662	7.768	25.462	90.787	204.326
])cnn1CO[N+](=O)[O-]						
COc1nc([N+](=O)[O-						
])n(CCO[N+](=O)[O-	H7C6N5O8	1.666	7.612	25.450	92.129	197.484
])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1ncc([N+](=O)[O-	H5C4N5O5	1.660	8.036	25.440	90.030	190.466
])n1						
O=[N+]([O-						
])OCCc1ncc([N+](=O)[O-	H7C6N5O8	1.669	7.842	25.419	83.942	195.726
])n1CO[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1cc([N+](=O)[O-	H5C4N5O5	1.658	8.011	25.401	88.191	190.166
])nn1						
Cn1nc([N+](=O)[O-						
])c(CO[N+](=O)[O-	H7C6N5O8	1.651	7.814	25.400	92.358	191.954
])c1CO[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1cnc([N+](=O)[O-	H5C4N5O5	1.663	8.004	25.395	84.645	191.310
])n1						
O=[N+]([O-						
])OCCc1cnn(CO[N+](=O)[H7C6N5O8	1.668	7.897	25.381	92.065	190.236
O-])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1nc([N+](=O)[O-	H7C6N5O8	1.668	7.821	25.357	82.480	193.850
])cc1CO[N+](=O)[O-]						
COc1nn(CCO[N+](=O)[O-						
])c([N+](=O)[O-	H7C6N5O8	1.668	7.609	25.325	96.001	200.365
])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1nc(CO[N+](=O)[O	H7C6N5O8	1.670	7.865	25.304	88.624	192.408
-])cc1[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1cc([N+](=O)[O-	H7C6N5O8	1.671	7.809	25.286	82.341	192.415
])c(CO[N+](=O)[O-])n1						

O=[N+]([O-						
])OCCc1nc([N+](=O)[O-	H7C6N5O8	1.666	7.804	25.286	84.373	196.382
])cn1CO[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1cc(CO[N+](=O)[O	H7C6N5O8	1.657	7.777	25.276	91.242	201.640
-])nc1[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1c([N+](=O)[O-	H7C6N5O8	1.664	7.815	25.243	86.817	200.621
])cnc1CO[N+](=O)[O-]						
O=[N+]([O-						
])OCCc1nn(CO[N+](=O)[O	H7C6N5O8	1.669	7.873	25.229	87.400	191.415
-])cc1[N+](=O)[O-]						
O=[N+]([O-						
])OCCc1cn(CO[N+](=O)[O	H7C6N5O8	1.669	7.855	25.222	86.164	190.873
-])nc1[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1ncc(CO[N+](=O)[H7C6N5O8	1.668	7.872	25.205	92.188	190.864
O-])c1[N+](=O)[O-]						
COc1c([N+](=O)[O-						
])nc([N+](=O)[O-	H7C6N5O8	1.659	7.580	25.200	97.316	199.099
])n1CCO[N+](=O)[O-]						
O=[N+]([O-						
])OCCc1c([N+](=O)[O-	H7C6N5O8	1.658	7.771	25.181	90.722	203.076
])ncn1CO[N+](=O)[O-]						
Cc1nc([N+](=O)[O-])no1	H3C3N3O3	1.651	7.871	25.179	68.223	205.714
O=[N+]([O-						
])OCCc1ncn(CO[N+](=O)[H7C6N5O8	1.664	7.884	25.164	90.234	191.092
O-])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1cc([N+](=O)[O-	H7C6N5O8	1.663	7.785	25.150	84.785	196.692
])nc1CO[N+](=O)[O-]						
COc1c([N+](=O)[O-						
])c([N+](=O)[O-	H7C6N5O8	1.667	7.594	25.147	96.184	198.435
])nn1CCO[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1c(CO[N+](=O)[O-	H7C6N5O8	1.661	7.836	25.116	83.735	195.558
])cnc1[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1ncc([N+](=O)[O-	H7C6N5O8	1.662	7.816	25.088	86.164	199.948
])c1CO[N+](=O)[O-]						
O=[N+]([O-						
])OCCc1cc([N+](=O)[O-	H7C6N5O8	1.659	7.824	25.074	89.746	202.177
])nn1CO[N+](=O)[O-]						
O=[N+]([O-	H7C6N5O8	1.659	7.858	25.030	85.393	193.480

])OCCc1cn(CO[N+](=O)[O						
-])c([N+](=O)[O-])n1						
COc1c([N+](=O)[O-						
])nn(CCO[N+](=O)[O-	H7C6N5O8	1.663	7.620	24.990	95.981	201.035
])c1[N+](=O)[O-]						
COc1nc([N+](=O)[O-						
])c([N+](=O)[O-	H7C6N5O8	1.656	7.583	24.987	88.502	196.733
])n1CCO[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1cnc([N+](=O)[O-	H7C6N5O8	1.658	7.792	24.970	85.875	198.462
])c1CO[N+](=O)[O-]						
O=[N+]([O-						
])OCCn1cnc(CO[N+](=O)[H7C6N5O8	1.657	7.850	24.969	94.504	190.922
O-])c1[N+](=O)[O-]						
Cc1nn(CCO[N+](=O)[O-						
])c([N+](=O)[O-	H7C6N5O7	1.651	7.775	24.902	101.815	211.477
])c1[N+](=O)[O-]						
O=[N+]([O-						
])OCCc1nc([N+](=O)[O-	H10C8N6O11	1 662	7 645	21 168	90 551	103 /37
])c(CCO[N+](=O)[O-	mocondom	1.002	7.045	24.408	90.551	175.457
])n1CO[N+](=O)[O-]						
O=[N+]([O-						
])OCCc1nc(CO[N+](=O)[O	H10C8N6O11	1 663	7 621	24 440	97 614	197 297
-])c([N+](=O)[O-	mocondom	1.005	7.021	24.440	97.014	197.297
])n1CCO[N+](=O)[O-]						
O=[N+]([O-						
])OCCc1c([N+](=O)[O-	H10C8N6O11	1 653	7 686	24 436	9/ 283	105 000
])nn(CCO[N+](=O)[O-	mocondom	1.055	7.000	24.430	74.205	1)3.)))
])c1CO[N+](=O)[O-]						
O=[N+]([O-						
])OCCc1c(CO[N+](=O)[O-	H10C8N6O11	1 661	7 648	24 325	90.059	191 712
])c([N+](=O)[O-	meenoon	1.001	7.040	24.525	90.059	171.712
])nn1CCO[N+](=O)[O-]						
O=[N+]([O-						
])OCCc1c([N+](=O)[O-	H10C8N6O11	1 660	7 629	24 277	92 611	196 876
])nc(CO[N+](=O)[O-	meenoon	1.000	1.02)	27.277	92.011	190.070
])n1CCO[N+](=O)[O-]						
O=[N+]([O-						
])OCCc1nc([N+](=O)[O-	H10C8N6O11	1 660	7 637	24 256	90.815	193 641
])c(CO[N+](=O)[O-		1.000		21.200	20.012	1,0.011
])n1CCO[N+](=O)[O-]						

2047538
$C_6H_7N_7O_9$
321.19
monoclinic
P 2 ₁ /c
13.4091(4)
11.1765(3)
16.6893(5)
90
90.5270(10)
90
2526.78(13)
8
298
1.689
0.159
1312.0
2.656 to 26.735
16, 14, 21
57641
4133 [$R_{int} = 0.0363$, $R_{sigma} = 0.0231$]
5355/0/399
1.057
0.0448
0.1102
0.0618
0.1245

 Table S3. Single crystal X-ray diffraction data of MC-1

0045540
2047548
$C_4H_4N_4O_5$
188.11
monoclinic
$P 2_1/c$
6.5012(5)
14.8421(11)
7.7354(5)
90
105.631(2)
90
718.80(9)
4
170
1.738
0.161
384.0
2.745 to 27.047
8, 18, 8
7519
1036 [$R_{int} = 0.0604$, $R_{sigma} = 0.0586$]
1551/0/134
1.177
0.0703
0.1062
0.1168
0.1230

 Table S4. Single crystal X-ray diffraction data of MC-2

2047557
$C_5H_5N_5O_7$
247.14
orthorhombic
P 21 21 21
8.32070(10)
9.07030(10)
12.6090(2)
90
90
90
951.62(2)
4
294.64
1.725
1.448
504
6.0010 to 77.4910
10, 10, 15
9947
1885 [$R_{int} = 0.0205, R_{sigma} = 0.0370$]
1989/0/174
1.121
0.0330
0.0777
0.0361
0.0869

 Table S5. Single crystal X-ray diffraction data of MC-3

ibie 50. Shigie ei jstui it iug unituetion	
CCDC	2047549
Formula	$C_8H_6N_{10}O_{14}$
Mr	466.23
Crystal system	orthorhombic
Space group	Pna21
<i>a</i> [Å]	9.5410(3)
<i>b</i> [Å]	10.2625(3)
<i>c</i> [Å]	17.2833(5)
α [°]	90
β [°]	90
γ [°]	90
V [Å ³]	1692.29(9)
Ζ	4
$T(\mathbf{K})$	295
$ ho[m g\ cm^{-3}]$	1.830
Mu [mm ⁻¹]	1.586
F(000)	944.0
θ [°]	5.01 to 77.79
h, k, lmax	11, 12, 21
reflections collected	15165
independent reflections	2691 [$R_{int} = 0.0635$, $R_{sigma} = 0.0368$]
data/restraints/parameters	2882/1/313
GOF on F2	1.113
<i>R</i> 1 [I>2σ(I)]	0.0645
<i>wR</i> 2 [I>2σ(I)]	0.1738
R1(all data)	0.0678
wR2(all data)	0.1860

Table S6. Single crystal X-ray diffraction data of MC-4

ibie 57. Shigie ei ystal 12 ray annaetion	
CCDC	2047558
Formula	$C_6H_7N_5O_8$
Mr	188.11
Crystal system	monoclinic
Space group	$P 2_1/c$
a [Å]	18.4801(8)
<i>b</i> [Å]	5.4258(2)
<i>c</i> [Å]	10.9951(4)
α [°]	90
β [°]	103.3230(10)
γ [°]	90
V [Å ³]	1073.33(7)
Ζ	4
$T(\mathbf{K})$	176.0
ho[g cm ⁻³]	1.715
Mu [mm ⁻¹]	0.161
F(000)	568.0
θ [°]	3.71 to 27.48
h, k, lmax	23, 6, 14
reflections collected	11585
independent reflections	1908 [$R_{int} = 0.0564, R_{sigma} = 0.0463$]
data/restraints/parameters	2434/0/173
GOF on F2	0.602
<i>R</i> 1 [I>2σ(I)]	0.0521
<i>wR</i> 2 [Ι>2σ(Ι)]	0.1447
R1(all data)	0.0696
wR2(all data)	0.1839

 Table S7. Single crystal X-ray diffraction data of MC-5

	2047550
CCDC	204/559
Formula	$C_5H_5N_5O_7$
Mr	247.14
Crystal system	orthorhombic
Space group	P b c a
<i>a</i> [Å]	6.1341(5)
<i>b</i> [Å]	9.4426(8)
<i>c</i> [Å]	31.793(3)
α [°]	90
β [°]	90
γ [°]	90
V [Å ³]	1841.5(3)
Ζ	8
<i>T</i> (K)	170
ρ [g cm ⁻³]	1.783
Mu [mm ⁻¹]	0.168
F(000)	1008.0
θ [°]	3.560 to 26.444
h, k, lmax	6, 11, 39
reflections collected	8540
independent reflections	1176 [$R_{int} = 0.0724$, $R_{sigma} = 0.0605$]
data/restraints/parameters	1889/0/155
GOF on F2	1.064
<i>R</i> 1 [I>2σ(I)]	0.0529
<i>wR</i> 2 [Ι>2σ(Ι)]	0.0966
R1(all data)	0.1053
wR2(all data)	0.1281

Table S8. Single crystal X-ray diffraction data of MC-6

2056920
$C_5H_5N_5O_8$
263.14
monoclinic
P 2 ₁ /n
11.7818(14)
10.1692(12)
16.570(2)
90
93.178(4)
90
1982.3(4)
4
170
1.763
0.169
1072.0
2.068 to 26.418
12, 12, 20
13525
2325 [$R_{int} = 0.0821$, $R_{sigma} = 0.0955$]
4032/0/327
1.096
0.0974
0.2349
0.1660
0.2673

 Table S9. Single crystal X-ray diffraction data of MC-7

CCDC	2047550
Formula	$C_4H_4N_4O_5$
Mr	188.11
Crystal system	monoclinic
Space group	Cc
<i>a</i> [Å]	5.321(2)
<i>b</i> [Å]	21.200(8)
<i>c</i> [Å]	6.910(3)
α [°]	90
β [°]	109.241(11)
γ [°]	90
V [Å ³]	736.0(5)
Ζ	4
<i>T</i> (K)	180
$ ho[m g~cm^{-3}]$	1.698
Mu [mm ⁻¹]	0.157
F(000)	384.0
θ [º]	3.667 to 26.428
h, k, lmax	6, 23, 6
reflections collected	2697
independent reflections	763 [$R_{int} = 0.0656, R_{sigma} = 0.0901$]
data/restraints/parameters	1231/2/118
GOF on F2	1.060
<i>R</i> 1 [Ι>2σ(Ι)]	0.0732
<i>wR</i> 2 [Ι>2σ(Ι)]	0.1604
R1(all data)	0.1291
wR2(all data)	0.1972

Table S10. Single crystal X-ray diffraction data of MC-8

	MC-1	MC-2	MC-3	MC-4	MC-5	MC-6	MC-7	MC-8	TNT
Density ^a (g cm ⁻³)	1.689	1.714	1.725	1.830	1.692	1.759	1.738	1.675	1.65
Δ _f H (kJ mol ⁻¹)	97.0	38.3	46.0	71.7	-88.3	16.2	-71.0	-7.7	-67.0
T _m (°C)	75.9	68.4	65.2	97.1	88.2	90.2	106.9	76.2	80.4
T _d ^b (°C)	208.7	191.1	221.0	188.0	219.8	180.5	183.2	183.9	295
D _v (km s ⁻¹)	8.139	8.020	8.165	8.705	7.912	8.238	8.175	7.843	6.881
P (GPa)	28.1	26.9	28.8	33.8	26.3	29.4	29.0	25.2	19.5
IS (J)	8	>20	>20	>20	>20	>20	>20	>20	15
FS (N)	96	144	96	160	96	96	96	96	353

Table S11. Physicochemical properties of synthesized compounds.

^a Crystal density at room temperature. For data collected at low temperature, the density was revised by the following equation: $\rho_{rt} = \rho - 0.188*(298.15-T)/1000$.

^b Peak temperature of decomposition.

Figure S8. ¹H and ¹³C NMR spectra for synthesized compounds.

MC-6

References

- 1. http://www.molmall.net/.
- 2. G. Landrum, RDKit: Open-source cheminformatics (2016).
- 3. F. Pedregosa, A. G. Gaël Varoquaux, M, Vincent *et al. J Mach Learn Res* 2011, **12**, 2825-30.
- 4. P. Yin, C. He, J. M. Shreeve, J. Mater. Chem. A, 2016, 4, 1514-1519.
- 5. M. F. Bölter, A. Harter, T. M. Klapötke, J. Stierstorfer, ChemPlusChem, 2018, 83, 804-811.
- Y. Wang, S. Huang, W. Zhang, T. Liu, X. Qi, Q. Zhang, Chem. Eur. J. 2017, 23, 12502-12509.
- H. Li, L. Zhang, N. Petrutik, K. Wang, Q. Ma, D. Shem-Tov, F. Zhao, M. Gozin, ACS Cent. Sci. 2020, 6, 54-75.
- 8. G. M. Sheldrick, Acta Crystallogr Sec C, 2015, 71, 3-8.
- 9. M. J. Frisch, et al. Gaussian 09, Revision D.01 (Gaussian, Inc., Wallingford CT, 2013).
- 10. Q. Wang, P. Ma, S. Neng, C. J. Chem. Eng., 2009, 17, 468-472.
- 11. L. Constantinou, R. Gani, AIChE J., 1994, 40, 1697-1710.
- 12. A. Jain, S. H. Yalkowsky, Ind. Eng. Chem. Res., 2007, 46, 2589-2592.
- 13. A. U. Bhat, S. S. Merchant, S. S. Bhagwat, Ind. Eng. Chem. Res., 2008, 47, 920-925.
- 14. M. Karthikeyan, R. C. Glen, A. Bender, J. Chem. Inf. Mod., 2005, 45, 581-590.
- 15. G. Sivaraman, N. E. Jackson, B. Sanchez-Lengeling et al. Chemrxiv., 2019, 9914378.v1.