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Figure S1. TEM images of (a)(b) ZIF-8@Fe-Co, (c)(d) APPC and (e)(f) generated carbon 

nanotubes during calcination. The scales are (a) 100 nm, (b) 10 nm, (c) 100 nm, (d) 20 nm, (e) 

10 nm and (f) 5 nm, respectively. 

 

 

 

 

 

 

   
 

Figure S2. TEM images of (a)(b) ZIF-8, (c)(d) PC and (e)(f) PC/Se. The scales are: (a)(b)(e) 

100 nm; (c)(f) 20 nm; (d) 10 nm. 

 

 

 



 

Figure S3. (a) TEM images of APPC and CNTs highlighted by red circles. (b) (c) Atomic-level 

HAADF-STEM images of APPC.  

 



 

 

Figure S4. (a) STEM image of APPC and (b-f) EDS elemental maps of C, N, Fe, Co and O, 

respectively. 

 

 

 

 

 

Figure S5. TEM images of (a)(b) APPC/Se, (c)(d) APPC/Se@PDA. The scales are 20 nm for 

(b), 100 nm for others, respectively. 

 

 



 

 

 
               

Figure S6. (a) SEM image of PC/Se and (b-e) EDS elemental maps of Se, Co, C and Fe, 

respectively. The scale of (a) is 250 nm. 

 

 

 
 

Figure S7. XRD patterns of APPC/Se@PDA, APPC/Se, APPC and pure PDA. 



 

 

Figure S8. XRD paterns of ZIF-8, PC and PC/Se. pore size distributions using DFT analysis of 

PC and PC/Se, respectively. 

 

 

 

 

Figure S9. (a) Co K-edge EXAFS k-plot fitting curves and (b) Fe K-edge EXAFS k-plot fitting 

curves. 



 

Figure S10. TG curves of APPC/Se@PDA, APPC/Se, PC/Se and pure PDA.



 

   
 

Figure S11. (a) N2 adsorption-desorption isotherms of APPC, APPC/Se and 

APPC/Se@PDA. 

 

Figure S12. Pore size distributions using DFT analysis of APPC, APPC/Se and 

APPC/Se@PDA , respectively.  



 
Figure S13. N2 adsorption-desorption isotherms of PC and PC/Se. 

 

 

 

 

Figure S14. Pore size distributions using DFT analysis of PC and PC/Se. 



 

   

 

 

 

Figure S15. XPS survey spectra of APPC/Se. 

 

 

 

 

 

 

 

 

 
 

Figure S16. XPS survey spectra of APPC/Se@PDA. 

 

 

 

 

 

 



 

 

 

 

Figure S17. N 1s XPS survey spectra of APPC/Se.  

 

 

 

 

 

 

 

 

Figure S18. (a) N 1s and (b) XPS survey spectra of PC/Se. 

 



 

 

Figure S19. Element contents measured by XPS and Inductively Coupled Plasma 

Optical Emission Spectrometry (ICP-OES). 

 

   

 

 

 

 

     



 

 

Figure S20. Typical voltage profiles of APPC/Se@PDA cathode (a) for 1-5 cycles at 

0.2 C, (b) from 0.2 to 5 C at a selenium loading of 2 mg cm-2 and (c) at 0.5 C for three 

different Se loadings. Typical voltage profiles at 2 C for 1st cycle, 100th cycle and 

200th cycle of (d) APPC/Se@PDA, (e) APPC/Se and (f) PC/Se cathodes at a Se 

loading of 2 mg cm-2, respectively. 

 

 

 

 
 

Figure S21. Nyquist plots of (a) APPC/Se and (b) PC/Se cathodes after 1 st cycle and 

100th cycle, respectively. 



 

Figure S22. Cycling performance at 10 C of APPC/Se@PDA cathode. 

 

 

 
  

Figure S23. Cycling performance at 15 C of APPC/Se@PDA cathode. 

 

 

 

 

Figure S24. Cycling performance at 0.2 C of APPC/Se@PDA cathode at a Se loading 

of 2 mg cm-2. 
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Figure S25. Cycling performance at 0.5 C of APPC/Se@PDA cathode at a Se loading 

of 2.5 mg cm-2. 

 

 

 

Figure S26. Cycling performance at 0.5 C of APPC/Se and APPC/Se@PDA cathodes. 

 

 

 

 

 

Figure S27. Cycling performance at 1 C of APPC/Se@PDA, Fe-APC/Se and Co-

APC/Se cathodes at a Se loading of 2.5 mg cm-2. 
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Figure S28. Cycling performance at 1 C of APPC/Se@PDA and APPC/Se cathodes at 

a Se loading of 3 mg cm-2. 

 

 

 

 

Figure S29. Cycling performance at 2 C of APPC/Se@PDA cathode at a Se loading of 

3 mg cm-2. 

 

 

 
 

Figure S30. Cycling performance at 0.2 C of APPC/Se@PDA cathodes at a Se loading 

of 4 mg cm-2. 



 

 

 

Figure S31. The ex-situ (a)(c) C 1s and (b)(d) Se 3d XPS spectra of PC/Se cathode. 

 

 

 
 

Figure S32. (a)(b)The TEM images of APPC/Se@PDA cathode after 600 cycles and 

(c) the EDS elemental mapping corresponding to (b). 



 

 

 

Table S1. EXAFS data fitting results of APPC. 

 

Edge Path N R(Å) σ2(Å2) 

Fe Fe-N1 2 2.00 0.003 

Fe-N2 2 2.09 0.004 

Co Co-N1 2 1.94 0.003 

Co-N2 1 2.00 0.003 

Co-Co 1 2.39 0.002 

 

N: coordination number;  

R: distance between absorber and backscatter atoms;  

σ2 : the Debye-Waller factor value. 

 

 

 

 

 

 

Table S2. The calculation of selenium content in APPC/Se@PDA. 

 

 

 

 

 

 

 

From above we conclude that x+y=1 and 61%*x+42%*y=58%, so x=16% and y=84%. 

As a result, the content of Se in APPC/Se@PDA is 84%*61%=51%. 

 

 

 

 

 

WAPPC/Se in APPC/Se@PDA x 

WPDA in APPC/Se@PDA y 

WSe in APPC/Se 61% 

Wloss of pure PDA  42% 

Wloss of APPC/Se@PDA 58% 



Table S3. Comparison of electrochemical performance of various carbon hosts as Se 

cathodes reported for Li-Se batteries with the APPC/Se@PDA cathode in this work. 

 

 

 

 

 

Samples Se 

loading 

( mg cm-2) 

Current 

density 

Capacity 

(mAh g-1) 

Cycle 

number 

Ref. 

APPC/Se@PDA 0.8  2 C 645 700 This 

work 

  5 C 500 1400  

  10 C 420 1500  

  15 C 303 2700  

  23 C 274 2500  

 2 0.5 C 400 600  

 4 0.2 C 536 220  

Se@CoSA-HC 0.8  5 C 340 1500 Ref.1 

  20 C 237 2500  

A4-carbon/Se 0.4 3 C 343 2000 Ref.2 

NPC/CGB-Se 0.4 15 C 409 10 Ref.3 

 1.8 0.5 C 380 90  

MiC/Se 1.8 0.5 C 400 500 Ref.4 

 2.2 0.5 C 348 500  

PANI@Se/C-G 2 0.2 C 588.7 200 Ref.5 

  2 C 528.6 500  

  5 C 403 500  

BP-CNF/Se 0.4 0.5 C 588 300 Ref.6 

Se–NCHPC 0.7 2 C 305 60 Ref.7 

Se/MMPBc-3 1.3 0.2 C 467 300 Ref.8 

Se–CP - 1 C 506 150 Ref.9 

Se/CMK-3 - 1 C 304 500 Ref.10 

Se/MCN-RGO 1.2 1 C 385 1300 Ref.11 

Se/CMCs  

 

1 0.5 C 231 460 Ref.12 

  2 C 166 460  
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