Supporting Information

Interfacial architecting with anion treatment for enhanced thermoelectric power of flexible ternary polymer nanocomposites

Jiaqian Zhou, Peng Peng, Zhao Li, Lirong Liang, Xuan Huang, Haicai Lv, Zhuoxin Liu* and Guangming Chen*

Figure S1. TE property variation as a function of electrochemical deposition time of PPy for the CNTP/P_y composites. The reference data (100%) is extracted from CNTP.

Figure S2. TE property variation as a function of electrochemical deposition time of PANI for the CNTP/P_y/P_a composites with the PPy deposition time fixed at 50 s. The reference data (100%) is extracted from CNTP/P_y.

Figure S3. TE property variation as a function of electrochemical deposition time of PPy and PANI for the $CNTP/P_y/P_a$ composites with identical PPy and PANI deposition time. The reference data (100%) is extracted from CNTP.

Figure S4. SEM images showing the morphology evolution of the nanocomposites during the preration process.

Figure S5. Cross-sectional SEM image of the CNTP/ P_y/P_a nanocomposite film showing the multi-layer structure of the pristine CNTP and the deposited polymer on its surficial layer.

Figure S6. SEM images showing the morphology of the CNTP/ P_y nanocomposites with the PPy deposition time of 200 s.

Figure S7. SEM images showing the morphology of the CNTP/ P_y/P_a nanocomposites with the PPy deposition time of 50 s and the PANI deposition time of 200 s.

Figure S8. XPS C1s spectra of the (a) CNTP, (b) CNTP/P_a, (c) CNTP/P_a/P_y and (d) CNTP/P_a/P_y/Z nanocomposites.

Figure S9. XPS N1s spectra of the (a) $CNTP/P_a$ and (b) $CNTP/P_a/P_y$ nanocomposites.

Figure S10. XPS Zn2p spectra of the (a) CNTP/ $P_y/P_a/Z$ and (b) CNTP/ $P_a/P_y/Z$ nanocomposites. XPS F1s spectra of the (a) CNTP/ $P_y/P_a/Z$ and (b) CNTP/ $P_a/P_y/Z$ nanocomposites.

Figure S11. AFM images of the $CNTP/P_y/P_a$ and $CNTP/P_y/P_a/Z$ nanocomposites.

Figure S12. The electrical conductivity and the Seebeck coefficient variation of the $CNTP/P_y/P_a/Z$ nanocomposite at elevated temperatures in air.

Figure S13. The power factor variation of the $CNTP/P_y/P_a/Z$ nanocomposite at elevated temperatures in air.

Figure S14. The thermopower variation of the CNTP/ $P_y/P_a/Z$ nanocomposite exposed to the ambient environment for successive 7 days.

Figure S15. Stress-strain curves of the (a) CNTP and (b) $CNTP/P_y/P_a/Z$ nanocomposites.

Figure S16. Mechanical property data of the (a) CNTP and (b) $CNTP/P_y/P_a/Z$ nanocomposites.

Figure S17. Illustration of the condiguration of the flexible TE device using $CNTP/P_y/P_a/Z$ nanocomposite films as TE legs.

Figure S18. Time-depentant photos showing the OCVs of the flexible TE device when harvesting human body heat.