Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Influence of Diluent Concentration in Localized High Concentration Electrolytes: Elucidation of Hidden Diluent-Li⁺ Interactions and Li⁺ Transport Mechanism

Saul Perez Beltran¹, Xia Cao⁴, Ji-Guang Zhang⁴, Patrick Z. El-Khoury⁴, and Perla B. Balbuena^{1,2,3},* ¹Department of Chemical Engineering, ²Department of Materials Science and Engineering, and ³Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States ⁴Energy and Environment Directorate, Pacific Northwest National Laboratory (PNNL), Richland, Washington 99354, United States

*e-mail: balbuena@tamu.edu

Electrolyte	Molar Ratio	# Molecules	Unit cell size
Formulation	LIFSI:DMC:TTE	LIFSI:DMC:TTE	a1 x a2 x a3 [A]
A1	1.00:2.00:5.00	24:48:128	30.94 x 31.20 x 30.47
A2	1.00:2.16:4.31	32:64:120	31.01 x 30.90 x 31.04
A3	1.00:2.00:3.00	32:72:104	30.22 x 29.90 x 31.17
A4	1.00:2.00:2.00	48:88:88	30.14 x 30.29 x 31.31

Table S1: Simulation cells for classical MD simulations without electric field

Table S2: Simulation cells for classical MD with electric field (0.4 V/Å)

Electrolyte Formulation	Molar Ratio LiFSI:DMC:TTE	Molar Ratio LiFSI:TTE	# Molecules LiFSI:DMC:TTE	Unit cell size a1 x a2 x a3 [Å]
A1	1.00:2.00:5.00	0.20	72:144:384	30.94 x 31.20 x 99.40
A2	1.00:2.16:4.31	0.23	96:192:360	31.01 x 30.90 x 101.11
A3	1.00:2.00:3.00	0.33	96:216:312	30.22 x 29.90 x 101.51
A4	1.00:2.00:2.00	0.50	144:264:264	30.14 x 30.29 x 101.92

AIMD-NVT formulation A1

35 2.5 Li-O 30 Li-F 2.0 g(r) [Arb. Units] 25 1.5 20 15 1.0 10 0.5 5 0 0.0 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 r [Å]

[Arb. Units]

g(r)

AIMD-NVT formulation A2

AIMD-NVT formulation A3

AIMD-NVT formulation A4

Classical MD- Formulation A1

Classical MD- Formulation A2

Classical MD- Formulation A3

Classical MD- Formulation A4

Figure S1: Partial Radial distribution function (PRDF) profiles for Li-O (left vertical axis) and Li-F (right vertical axis) interactions from AIMD-NVT and classical MD simulations.

Figure S2: HOMO levels as functions of Bader electronic charges and Li-O, Li-F interactions for formulations A1, A2, A3, and A4.

Figure S3: Reduction potentials (E. Red., in V) vs. Li/Li⁺ as functions of Bader electronic charges and Li-O, Li-F interactions for formulations A1, A2, A3, and A4. The solvent and FSI⁻ geometry configurations as found across formulations A1 to A4.

AIMD-A1

Classical MD-A2

AIMD-A3

AIMD-A4

Classical MD-A3

Classical MD-A4

Figure S4: Grey-colored polyhedral construction drawn for all formulations around interconnected networks from AIMD-NVT and Classical MD simulations.

A1 formulation

Figure S5: Concentration profiles before and after applying electric field (0.4 V/Å): Formulations P1, P4, and P5.

Figure S6: Solvation shells computed in formulation P1 for all Li⁺ ions for every step of the simulation: Average Li+ displacement between two consecutive frames (0.125 ps) and number of times the solvation shells repeats throughout the simulation (count) vs. global coordination number (CN), Li⁺ coordination with FSI- anions (Ofsi), carbonyl oxygen atoms (Cybx), and TTE molecules (F_TTE)

Figure S7: Solvation shells computed in formulation P4 for all Li⁺ ions for every step of the simulation: Average Li+ displacement between two consecutive frames (0.125 ps) and number of times the solvation shells repeats throughout the simulation (count) vs. global coordination number (CN), Li⁺ coordination with FSI- anions (Ofsi), carbonyl oxygen atoms (Cybx), and TTE molecules (F_TTE)

Figure S8: Solvation shells computed in formulation P5 for all Li⁺ ions for every step of the simulation: Average Li+ displacement between two consecutive frames (0.125 ps) and number of times the solvation shells repeats throughout the simulation (count) vs. global coordination number (CN), Li⁺ coordination with FSI- anions (Ofsi), carbonyl oxygen atoms (Cybx), and TTE molecules (F_TTE)