Electronic Supplementary Information

Determination of products

Detection of nitrate-N. ^[1] In order to adjust the absorbance to match the range of calibration curves, the electrolytes were diluted 12.5 times. Then, 0.1 mL 1 M HCl and 0.01 mL 0.8 wt.% NH₂SO₃H solution were added into 5 mL of diluted electrolyte. After 10 min, the absorption spectrum was recorded at wavelength of 220 nm and 275 nm. The final absorbance was confirmed by the following formula: $A = A_{220nm} - 2A_{275nm}$. The calibration curve of nitrate is measured by different concentrations of KNO₃.

Detection of nitrite-N. ^[1] First, 400 mg $C_6H_8N_2O_2S$, 20 mg $C_{12}H_{14}N_2 \cdot 2HCl$ and 1 mL H_3PO_4 was dissolved in the 5 mL water to form color developer. Then, 0.1 mL color developer was added into 5 mL of electrolytes which was diluted 20 times. When 20 min later, the absorbance was tested by UV-Vis spectrum and recorded at wavelength of 540 nm. The calibration curve of nitrate is measured by different concentrations of NaNO₂.

Detection of ammonium-N. ^[1] Nessler's reagent was used as color reagent for ammonium-N. A little of post-tested electrolyte was taken out and diluted 20 times. Then, 0.1 mL Nessler's reagent and 0.1 mL of 0.5 g/L $C_4H_4O_6KNa\cdot 4H_2O$ was added to 5 mL diluted electrolyte., and the mixture was left for 20 min. The wavelength of ammonium-N at 420 nm was confirmed using UV-Vis spectrum. And the calibration curve of nitrate is measured by different concentrations of NH₄Cl.

Isotope Labeling Experiments.

The isotope labeling nitrate reduction experiment was performed using $K^{15}NO_3$ as N-source to confirm source of N in ammonia. The electrolyte contained 0.5 M K₂SO₄ and 50 ppm $K^{15}NO_3$ -¹⁵N was added into electrolytic cell as the reactant. Then, the pH value of the cathode electrolyte was adjusted to 1~2 by 4 M H₂SO₄ after electrocatalytic procedure in order to confirm that the N-source is nitrate reduction. The standard reference material used is $K^{15}NO_3$ and $^{15}NH_4$ Cl.

Calculation of yield, selectivity and Faradaic efficiency: The calculation source of all results is provided by the absorbancemeasured by the UV-Vis spectrophotometer.

The result of yield is obtained by Eq. 1:

$$Yiled_{NH_3} = (c_{NH_3} \times V)/(t \times m)$$
(1)

The result of conversion rate is obtained by Eq. 2:

$$Conversion_{NO_{3}^{-}} = \Delta c_{NO_{3}^{-}} / c_{0} \times 100\%$$
(2)

The result of NO_2 - selectivity is obtained by Eq. 3:

$$Selectivity = c_{NO_{2}^{-}} / \Delta c_{NO_{3}^{-}} \times 100\%$$
(3)

The result of NH₃ selectivity is obtained by Eq. 4:

$$Selectivity = c_{NH_3} / \Delta c_{NO_3^-} \times 100\%$$
(4)

The Faradaic efficiency (FE) of nitrate reduction was obtained by Eq 5:

$$FE = (8F \times c_{NH_3} \times V) / (M_{NH_3} \times Q)$$
(5)

Here, ${}^{c_{NH_3}}$ is the mass concentration of NH₃ in the cathode electrolyte after the test, V is the volume of electrolyte in the cathode, ${}^{M_{NH_3}}$ is the molar mass of NH₃, t is the electrocatalytic time, m is the mass of the catalyst on the working electrode, ${}^{\Delta c}{}_{NO_3^-}$ is the difference in the concentration of nitrate in the catholyte before and after electrocatalytic, c_0 is the actual concentration of nitrate in the conFig.d electrolyte, c is the concentration of nitrite or ammonia

in the catholyte after electrolysis, F is the Faradaic constant (96485 C mol⁻¹), Q is the total charge pass electrode during the electrochemical process.

Fig. S1 (a) SEM image and (b) TEM image of CuO NPs.

Fig. S2 Cu 2p XPS spectrum of dr-Cu NPs.

Fig. S3 SEM image of *dr*-Cu NPs.

Fig. S4. The electrocatalytic reduction of nitrate to ammonia in an H-type electrolytic cell.

Fig. S5 (a) The absorbance of different NaNO₃ concentration ranging from 0.2 μ g mL⁻¹ to 4.0 μ g mL⁻¹ (b) The concentration-absorbance calibration curves of nitrate-N.

Fig. S6 (a) The absorbance of different NaNO₂ concentration ranging from 0.01 μ g mL⁻¹ to 0.2 μ g mL⁻¹ (b) The concentration-absorbance calibration curves of nitrite-N.

Fig. S7 (a) The absorbance of different NH_4Cl concentration ranging from 0.2 µg mL⁻¹ to 2 µg mL⁻¹ (b) The concentration-absorbance calibration curves of ammonium-N.

Fig. S8 (a)TEM image and (b) HAADF-SEM image of *dr*-Cu NPs after electrocatalytic nitrate reduction testing.

Fig. S9 SEM image of df-Cu NPs.

Fig. S10 LSV curves of df-Cu NPs and dr-Cu NPs in 0.5 M K₂SO₄ with 50 ppm KNO₃-N.

Fig. S11 LSV curves of dr-Cu NPs in 50 ppm KNO₃⁻-N with and without 50 ppm SCN⁻.

Fig. S12 The ¹H NMR spectra (600 MHz) of ¹⁵NH₄⁺ with different ¹⁵NH₄⁺⁻¹⁵N concentration. he proton signal of maleic acid appears at $\delta = 6.31$ ppm. The ¹H NMR spectra of 1¹⁵NH₄⁺ showed double peaks at $\delta = 7.10$ and 6.98 ppm.

Fig. S13 (a) CV curves of *dr*-Cu NPs, (b) Plots of the current density versus the scan rate for *dr*-Cu NPs, (C) CV curves of *df*-Cu NPs with various scan rates from 20 to 100 mV s⁻¹ and (d) Plots of the current density versus the scan rate for *df*-Cu NPs.

Fig. S14 EIS of *dr*-Cu NPs and *df*-Cu NPs.

Electrocatalyst	Electrolyte	NO ₃ -	Ammonia	Ref.
		conversion	Selectivity	
dr-Cu NPs	50 ppm NO ₃ ⁻ -N + 0.5 M	93.26%	81.99%	This
	K_2SO_4			work
Fe	50 ppm NO ₃ ⁻ -N + 0.5 g/L	91%	28%	[2]
	Na_2SO_4			[2]
Pd-Fe foam	50 ppm NO ₃ ⁻ -N + 413 ppm	39.8%	92%	[3]
	K ₂ HCO ₃ + 172 ppm CaSO ₄			
Fe (20%)@N-C	50 ppm NO ₃ ⁻ -N + 50 mM	83.0%	<75%	[4]
	Na_2SO_4			[4]
Cu/Ti + Cu/AC	50 ppm NO ₃ ⁻ -N	96.05%	62.64%	[5]
Cu/Ti	50 ppm NO ₃ ⁻ -N +0.5 mg/L	71.8%	N.A.	[6]
	Na ₂ SO ₄			[0]
Ni-Fe ⁰ @Fe ₃ O ₄	50 ppm NO ₃ ⁻ -N + 10 mM	90.2%	10.4%	[7]
	NaCl			
BDD	50 ppm NO ₃ ⁻ -N + 0.1 g/L	42%	8.9%	[8]
	Na ₂ SO ₄			
$PdCu/\gamma Al_2O_3$	50 ppm NO ₃ ⁻ -N	100%	19.6%	[9]
$Pd_{0.4}Cu_{0.6}$	50 ppm NaNO ₃	N. A.	49%	[10]
Co ₃ O ₄ -TiO ₂ /Ti	$50 \text{ ppm NO}_3^- + 0.1 \text{ M Na}_2\text{SO}_4$	89%	24%	[11]
	+ PVP + 1000 ppm Cl ⁻			[11]
Cu/Ni/20-min	50 ppm NO ₃ ⁻ -N + 0.1 M	97.2%	66.6%	[12]
	K_2SO_4			
Ni-TNTA	50 ppm NO ₃ ⁻ -N	89.6%	N.A.	[13]
Pt nanoparticle	50 ppm NO ₃ ⁻ -N	35%	N.A.	[14]

Table S1 The comparisons of NO_3RR performance for the *dr*-Cu NPs and some other reportedelectrocatalysts.

References

- [1] Y. Wang, W. Zhou, R. Jia, Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 2020, 59, 5350-5354
- [2] W. Li, C. Xiao, Y. Zhao, Q. Zhao, R. Fan, J. Xue, *Catal. Lett.***2016**, *146*, 2585-2595.

[3] L. Rajic, D. Berroa, S. Gregor, S. Elbakri, M. MacNeil, A. N. Alshawabkeh, *Int. J. Electrochem. Sci.***2017**, *12*, 5998-6009.

[4] W. Duan, G. Li, Z. Lei, T. Zhu, Y. Xue, C. Wei, C. Feng, *Water. Res.* 2019, *161*, 126-135.

[5] Q. Wang, H. Huang, L. Wang, Y. Chen, *Environ. Sci. Pollut. Res. Int.*2019, *26*, 17567 17576.

[6] F. Liu, Int. J. Electrochem. Sci. 2016, 8308-8322.

- [7] Z. A. Jonoush, A. Rezaee, A. Ghaffarinejad, J. Clean. Prod. 2020, 242, 5998 6009.
- [8] P. Kuang, K. Natsui, Y. Einaga, *Chemosphere* **2018**, *210*, 524-530.
- [9] Z. Zhang, Y. Xu, W. Shi, W. Wang, R. Zhang, X. Bao, B. Zhang, L. Li, F. Cui, *Chem. Eng. J.*2016, 290, 201-208.
- [10] J. F. Su, I. Ruzybayev, I. Shah, C. P. Huang, Appl. Catal. B 2016, 180, 199-209.
- [11] J. Gao, B. Jiang, C. Ni, Y. Qi, Y. Zhang, N. Oturan, M. A. Oturan, *Appl. Catal. B* 2019, 254, 391-402.
- [12] Y.-J. Shih, Z.-L. Wu, Y.-H. Huang, C.-P. Huang, Chem. Eng. J.2020, 383,123157.
- [13] F. Liu, K. Liu, M. Li, S. Hu, J. Li, X. Lei, X. Liu, *Chemosphere* **2019**, *223*, 560-568.
- [14] Q. Wang, X. Zhao, J. Zhang, X. Zhang, J. Electroanal. l Chem. 2015, 755, 210-214.