Construction of dual-carbon-confined metal sulfide nanocrystals via bio-mimetic reactors enabling superior Fenton-like catalysis

Tao Xu, ^a Yanping Long, ^a Chao He, ^a Xin Song, ^b Weifeng Zhao, ^a * and Changsheng Zhao ^{a,c}

^a College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China

 ^b Department of Materials, Department of Bioengineering and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
 ^c College of Chemical Engineering, Sichuan University, Chengdu, 610065, China

* Corresponding author. E-mail: weifeng@scu.edu.cn; zhaoscukth@163.com (Weifeng Zhao) Tel.: +86-28-85400453; Fax: +86-28-85405402.

Experimental

Chemicals

κ-Carrageenan, peroxymonosulfate (PMS), tert-butyl alcohol (TBA), pbenzoquinone (pBQ), L-histidine (L-his), β-carotene, 5, 5-dimethyl-1-pyrroline-*N*oxide (DMPO), 2, 2, 6, 6-tetramethyl-4-piperidinol (TEMP), metal chloride salts (cobalt chloride hexahydrate (CoCl₂·6H₂O), iron (II) chloride tetrahydrate (FeCl₂·4H₂O), nickel chloride hexahydrate (NiCl₂·6H₂O), manganese chloride (MnCl₂) and chromium chloride hexahydrate (CrCl₃·6H₂O)), organic dyes (Rhodamine B (RhB), methyl orange (MO), methyl violet (MV), orange G (OG), methylene blue (MB)), p-chlorophenol (4-CP), sulfamethoxazole (SMX), ciprofloxacin (CIP), tetracycline hydrochloride (TC), Ibuprofen (IBP) and humic acid (HA) were purchased from Aladdin Reagent Co. Ltd. Methanol (MeOH), hydrochloric acid (HCl, 36-38 %), dimethylsulfoxide (DMSO) were purchased from Chengdu Kelong Chemical Reagent Co. Ltd. All the chemicals were analytical grade and used as received.

Fabrication of TMS/carbon nanocomposites via seaweed-mimetic reactor

Zeta potential measurement was carried out with a Zetasizer Nano-ZS90 (Malvern Instruments Ltd., UK). The κ -carrageenan before and after addition of Co (II) were freeze-dried and ground to powders. Then the powders were dispersed to prepare a 1 mg/mL suspension in DI water and the pH value was adjusted (pH 6). The zeta potential measurements were carried out at 25 °C. In order to investigate the effects of different transition metals (TM) on the catalytic performance of catalysts, additional transition metal salts (CoCl₂, FeCl₂, NiCl₂, MnCl₂ and CrCl₃) were used and pyrolyzed at 900 °C. In order to investigate the effects of Co (II)/SMR ratio on the catalytic performance of catalysts, samples were prepared by varying the initial weight ratio of Co(II)-to- κ -carrageen in the Co@SMR, and pyrolyzed at 900 °C (denoted as C-Co@SMR-900-R, where R represents the weight ratio of Co(II)-to- κ -carrageen). Detailed synthetic parameters/conditions were all compiled in Table S1 below. Additionally, C-SMR-900 was synthesized by following the same procedure as above but without metal assisted.

Comula	Pyrolysis	n of TM (mM)	m (TM):	
Sample	Temperature (°C)		m (carrageen) ^a	
C-Co@SMR-800	800	100	1.125:1	
C-Co@SMR-900	900	100	1.125:1	
C-Co@SMR-1000	1000	100	1.125:1	
C-Fe@SMR-900	900	100	0.831:1	
C-Ni@SMR-900	900	100	0.994:1	
C-Mn@SMR-900	900	100	0.526:1	
C-Cr@SMR-900	900	100	1.114:1	
C-Co@SMR-900-R0.1	900	10	0.113:1	
C-Co@SMR-900-R0.3	900	33	0.375:1	
C-SMR-900	900	0	0	

Table S1. Samples obtained from different synthetic conditions.

^a Initial weight ratios of reagents used to synthesize the materials.

Preparation of Co₉S₈ nanoparticles (NPs)

A control sample comprising only Co_9S_8 NPs was also synthesized using the following hydrothermal synthetic procedure.¹ First, cobalt (II) acetate tetrahydrate $(Co(Ac)_2 \cdot 4H_2O, 5 \text{ mmol})$ and thiourea $((NH_2)_2CS, 5 \text{ mmol})$ were dissolved in ethylene glycol (30 mL). The resulting solution was then transferred into a Teflon-lined stainless-steel autoclave (40 mL) and kept in an oven at 200 °C for 8 h. The mixture was let to cool down to room temperature and then centrifuged. The resulting black-colored solid powdered product was rinsed with ethanol and let dry at 60 °C.

Preparation of C-Co@SMR-900E

To thoroughly remove the Co_9S_8 nanocrystals in the C-Co@SMR-900, 50 mg of C-Co@SMR-900 were put in 5 M HCl solution at 80 °C for 4 days, followed by washing with deionized water and then drying at 60 °C for 6 h. The obtained sample was named

as C-Co@SMR-900E.

Preparation of C-Co@SMR-900/PVDF composite microfiltration membrane

The C-Co@SMR-900/PVDF composite microfiltration membrane was prepared by directly filtering 10 mg of C-Co@SMR-900 suspensions on a PVDF substrate (Jinteng, 0.22 μm) to obtain a loading amount of 0.18 mg/cm².

Calculation of turnover frequencies (TOF) and apparent rate constant (k)

The turnover frequencies (TOF) per metallic atom basis for pollutant removal was calculated through dividing the reaction rate of pollutant degradation by the catalyst concentration.²

The apparent rate constant (k) was evaluated by a pseudo first-order kinetics model (eq S1):

$$-\ln\left(C_t/C_0\right) = kt \tag{1}$$

where C_0 is the initial pollutant concentration, C_t is the concentration at a certain time t during the degradation process.

The pollutant removal efficiency was calculated using eq S2:

Removal efficiency (%) = $100 \times (C_0 - C_t)/C_0$ (2)

where C_0 is the initial pollutant concentration, C_t is the concentration at a certain time t during the degradation process.

Electro-chemical measurement

Tafel diagrams were recorded on an electrochemical workstation (CHI 660E, Chenhua Instrument, China) employing a three-electrode system of platinum electrode as the counter, and saturated calomel electrode as the reference electrode. The electrolyte used in this study was 50 mM Na_2SO_4 aqueous solution. All the Tafel diagrams were obtained by polarizing the work electrodes ±200 mV with respect to their open circuit potentials. All the potentials in the Tafel diagrams were with respect to the standard hydrogen electrode (SHE). Electrochemical impedance spectroscopy (EIS) measurements were conducted on an AUTOLAB electrochemical workstation in the frequency range of 100 kHz - 10 mHz with an amplitude of 5 mV.

Recyclability and regeneration of C-Co@SMR-900

In each cycle, 1 mg RhB and 10 mg PMS were continuous added to the reaction system. In the recycle test, C-Co@SMR-900 was separated by centrifugation, washed with ethanol (twice) and water (twice), dried in a vacuum oven (60 °C) overnight, and collected for further tests.

Results

Fig. S1 Photographs of Fe@SMR, Ni@SMR, Mn@SMR and Cr@SMR.

Fig. S2 High resolution O 1s (a) and S 2p (b) XPS spectra of Co@SMR. (c) The zeta potential of the κ -carrageenan in the SMR before and after adding Co (II).

Fig. S3 XRD patterns of the C-Co@SMR-900, C-Fe@SMR-900, C-Ni@SMR-900, C-Mn@SMR-900 and C-Cr@SMR-900.

Fig. S4 3D-MS curves of the outlet gases during the *in-situ* sulfidation process.

Fig. S5 FESEM image and the corresponding EDS mapping of (a) C-Co@SMR-900, (b) C-Fe@SMR-900, (c) C-Ni@SMR-900, (d) C-Mn@SMR-900 and (e) C-Cr@SMR-900.

	C (at. %)	O (at. %)	S (at. %)	Co (at. %)
C-Co@SMR-	82 71	11.65	3.01	2 56
900	02.71	11.05	5.01	2.30

 Table S2. Surface elemental compositions of C-Co@SMR-900 obtained by EDS.

Fig. S6 TEM images of C-Co@SMR-900

Fig. S7 Intensity profiles obtained in the Co_9S_8 nanocrystals (Line 1) and graphitic layer (Line 2).

Fig. S8 HRTEM images of amorphous carbon layers with (a) micropores (b) defects in the C-Co@SMR-900.

Fig. S9 Raman spectra of the C-SMR-900.

	BET surface	BET surface Total pore		Meso-
0 1		1	1 [9]	macropore
Sample	area	volume	volumes [4]	volume ^[b]
	$(m^2 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 g^{-1})$	$(cm^3 a^{-1})$
				(cm ² g)
C-Co@SMR-800	338.385	0.195	0.108	0.078
C-Co@SMR-900	467.293	0.262	0.121	0.113
C-Co@SMR-1000	576.615	0.414	0.166	0.221

Table S3. Surface areas and pore volume distributions of the as-synthesized catalysts

^[a] Calculated using t-plot (FHH) method.

^[b] Calculated by subtracting the total pore volume with the micropore volumes.

Fig. S10 (a) Thermogravimetric (TG) traces in air in the temperature range of 50 °C to 800 °C for C-SMR-900, C-Co@SMR-800, C-Co@SMR-900 and C-Co@SMR-1000.
(b) XRD patterns of the residual material after TG test of C-Co@SMR-900.

Samples	Cobalt loadings (wt.%)			
	TG	ICP		
C-Co@SMR-800	29.18	29.40		
C-Co@SMR-900	25.95	26.22		
C-Co@SMR-900 C-Co@SMR-1000	28.03	29.05		

Table S4. Cobalt loadings of various catalysts obtained by TG and ICP-OES.

Fig. S11 XRD pattern of C-Co@SMR-900E

Table S5. Surface elemental compositions obtained by XPS.

Samples	(С	(C		S	C	Co
	at. %	wt. %						
C-Co@SMR-800	80.40	68.26	15.42	17.44	2.54	10.57	1.65	3.73
C-Co@SMR-900	89.27	79.97	6.89	8.22	1.31	5.75	2.53	6.06
C-Co@SMR-1000	93.06	86.90	4.49	5.58	0.67	3.07	1.78	4.45
C-Co@SMR-900E	88.58	83.20	9.65	12.10	1.64	4.11	0.13	0.61

Fig. S12 Percentages of different (a) Co and (b) S species present in C-Co@SMR-900.

Fig. S13 High-resolution C 1s spectra of C-Co@SMR-800, C-Co@SMR-900 and C-Co@SMR-1000. (b) Changes of different C species in different pyrolysis temperature.

Fig. S14 EPR spectra of C-SMR-900, C-Co@SMR-900E, Co₉S₈ NPs and C-Co@SMR-900.

Fig. S15 Time-dependent adsorption curves for RhB by different dosages of catalysts. (a) 0.1 g/L. (b) 0.02 g/L. [RhB]₀ = 20 mg/L, initial pH = 6.0, T = 298 K.

Fig. S16 The degradation curves of RhB catalyzed by C-Co@SMR-900, C-Fe@SMR-900, C-Mn@SMR-900, C-Ni@SMR-900 and C-Cr@SMR-900. Experimental conditions: $[RhB]_0 = 20 \text{ mg/L}, [PMS]_0 = 0.2 \text{ g/L}, [C-Co@SMR-900] = [C-Fe@SMR-900] = [C-Mn@SMR-900] = [C-Ni@SMR-900] = [C-Cr@SMR-900] = 0.1 g/L, initial pH = 6.0, T = 298 K.$

Fig. S17 The degradation curves of RhB catalyzed by C-Co@SMR-900-R0.1, C-Co@SMR-900-R0.3 and C-Co@SMR-900. Experimental conditions: $[RhB]_0 = 20$ mg/L, $[PMS]_0 = 0.2$ g/L, [Catalyst] = 0.02 g/L, initial pH = 6.0, T = 298 K.

Fig. S18 (a) The degradation curves of RhB catalyzed by C-Co@SMR-800, C-Co@SMR-900 and C-Co@SMR-1000. (b) Normalized k value by weight of Co. Experimental conditions: $[RhB]_0 = 20 \text{ mg/L}$, $[PMS]_0 = 0.2 \text{ g/L}$, [Catalyst] = 0.02 g/L, initial pH = 6.0, T = 298 K.

Fig. S19 Different characterization results for Co_9S_8 NPs synthesized by hydrothermal method. (a) FESEM image. (b) XRD pattern. (c) N_2 adsorption/desorption isotherms

Fig. S20 (a) XRD pattern of C-Co@SMR-900 after 24 h acid etching. (b) The degradation curves of RhB catalyzed by acid etched C-Co@SMR-900. (c) The removal efficiency of RhB and the corresponding k value catalyzed by acid etched C-Co@SMR-900 in 30 min.

Samples	Cobalt leaching (mg/L)
Co ₉ S ₈ NPs	1.92
C-Co@SMR-800	1.18
C-Co@SMR-900	0.86
C-Co@SMR-1000	0.85
European Union Standard	2.0
Chinese National Standard	1.0

Table S6. The ICP results for cobalt leaching experiments.

Fig. S21 Effects of different radical scavengers on the RhB degradation. (a) TBA, (b) MeOH, (c) pBQ, (d) L-his. Experimental conditions: $[RhB]_0 = 20 \text{ mg/L}, [PMS]_0 = 0.2 \text{ g/L}, [Catalyst] = 0.02 \text{ g/L}, initial pH = 6.0, T = 298 \text{ K}.$

Fig. S22 (a) EPR spectra in C-Co@SMR-900/PMS and C-Co@SMR-900/PMS/MeOH system with DMPO as the trapping agent. (b) Detection of O_2^{-} in C-Co@SMR-900/PMS/DMSO system with DMPO as the trapping agent.

Fig. S23 Corresponding atomic contents of Co and S before and after reaction.

Fig. S24 RhB degradation in C-Co@SMR-900/PMS system considering (a) catalyst dosage; (b) PMS dosage; (c) RhB concentration; (d) pH conditions. Experimental conditions: $[RhB]_0 = 20 \text{ mg/L}$, $[PMS]_0 = 0.2 \text{ g/L}$, [Catalyst] = 0.02 g/L, initial pH = 6.0, T = 298 K.

Fig. S25 Effects of inorganic anions and humic acid (HA) on RhB removal. Experimental conditions: $[RhB]_0 = 20 \text{ mg/L}$, $[PMS]_0 = 0.2 \text{ g/L}$, [Catalyst] = 0.02 g/L, $[Cl^-] = [H_2PO_4^-] = [HCO_3^-] = 5 \text{ mM}$ (if needed), [HA] = 5 mg/L (if needed), initial pH = 6.0, T = 298 K.

Fig. S26 Recyclability of C-Co@SMR-900 for RhB removal. Experimental conditions: [RhB]₀ = 20 mg/L, [PMS]₀ = 0.2 g/L, [Catalyst] = 0.02 g/L, initial pH = 6.0, T = 298 K

C 1.	Store strong	Maximum absorption wavelength
Compounds	Structure	(nm)
RhB	N CI- CI- COOH	554
МО		464
MV	H ₃ C _N -CH ₃ CI ⁻ H ₃ C _N + CH ₃ CH ₃ CH ₃	584
OG	ONA OSSO ON ONA ONA	478
MB		664

Compounds	Structure	Mobile phase	Flow rate (mL/min)	Absorption (nm)	Retention time (min)
	ОН	DI			
4-CP		water/Methanol,	1	225	6.27
	ĊI	(30/70, v/v)			
		DI			
	o o F. A H H	water/Acetonitrile			
CIP	N N N N	containing 0.1%	1	280	2.74
	ни	formic acid,			
		(78/22, v/v)			
	H ₂ N	Acetonitrile/			
SMV	$\langle \rangle$	Phosphate buffer	1	264	1 69
SIVIA	0 [~] S [~] O N ~O	(0.01M, pH 3),	1	204	4.00
	H	(54/46, v/v)			
		Acetonitrile/			
מסו	0	Phosphate buffer	1	220	9.04
IBP	ОН	(0.01M, pH 3),	1	220	8.94
		(60/40, v/v)			
	H ₂ C CH ₂	Acetonitrile/			
TO	OH CH3 NOH	Phosphate buffer	1	2(0	2.42
IC		(0.01M, pH 3),	1	360	2.43
	он о он о о	(82/18, v/v)			

Table S8. HPLC analysis conditions.

Fig. S27 The degradation curves of (a) dyes and (b) phenol and pharmaceuticals catalyzed by C-Co@SMR-900, [pollutants]₀ = 20 mg/L, [PMS]₀ = 0.2 g/L, [C-Co@SMR-900] = 0.02 g/L, initial pH = 6.0, T = 298 K.

Catalyst dagage	DMSa/IL O b	Dollutont	Depation time	D ann arral	Turnover	
	$PMS^2/\Pi_2O_2^2$	Ponutant	Keaction time	Removal	frequencies	Ref.
(g L ⁻¹)	dosage (g L ⁻¹)	$(mg L^{-1})$	(min)	efficiency (%)	(min ⁻¹)	
C1B2O-5 (0.8)	0.2ª	RhB (25)	180	63.6	0.005	3
ASMn-Nb (0.2)	0.5ª	RhB (20)	60	99.7	0.43	4
MnO ₂ /Fe ₂ O ₃ (0.06)	0.25 ^a	RhB (10)	20	100	3.85	5
5% Ca-Fe ₂ O ₃ (0.5)	0.2^{a}	RhB (10)	120	99	0.0736	6
CA (0.2)	0.3ª	RhB (20)	100	90	0.351	7
Fe-Co-Co PBA@PmPDs	0.4ª	RhB (15)	60	90.3	0.42	8
$CoFe_2O_4/TNTs$ (0.2)	4 ^a	RhB (100)	30	100	0.3365	9
A-Boron (0.2)	0.15ª	RhB (10)	60	90	0.178	10
Cal-ZIF-67/AC(0.12)	0.35ª	RhB (60)	60	98	0.4892	11
NH ₃ -S600-KOH (0.2)	0.25ª	RhB (20)	40	100	0.497	12
AgBiO ₃ /GO/NCDs-2 (0.5)	0.6^{a}	RhB (10)	10	95.35	0.1104	13
Co(II) doped $TiO_2(0.5)$	0.3ª	RhB (50)	40	99	0.496	14
1% Co-g-C ₃ N ₄ (0.4)	0.04 ^a	RhB (10)	25	99	0.3308	15
BFO-30 (0.2)	0.4^{a}	RhB (10)	50	99	0.495	16
30%-CNTs-Fe-Mn-0.5 (0.1)	0.4ª	RhB (15)	60	95	0.42	17
g-C ₃ N ₄ /MgO (0.2)	1.02 ^b	RhB (10)	420	91	2.1145	18

Table S9. The catalytic performance comparison of recently reported Fenton-like catalysts for RhB degradation. The turnover frequency (TOF) was calculated through dividing the reaction rate of pollutant degradation by the catalyst concentration.

MnFeO ₂ @OA/PS Janus	2 h	D1 D (10)	(00)	05	0.0109	19
particles (0.15)	20	KnB (10)	600	95	0.0198	17
Co-HAP-2 (0.2)	0.014 ^b	RhB (40)	12	93.3	0.166	20
$I-FeN_x/g-C_3N_4-5$	2 62b	DhD (200)	0	100	1.002	21
(0.5)	2.62 ^b	KIIB(200)	8	100	1.095	
Cu-C ₃ N ₄ (1)	1 ^b	RhB (4.79)	5	100	1.64	22
P-PFeCo (2)	0.1	RhB(20)	8	100	0.4	23
C-Co@SMR-900 (0.02)	0.2ª	RhB (10)	14	100	34.525	This work
C-Co@SMR-900 (0.02)	0.1ª	RhB (20)	14	83	4.94	This work
C-Co@SMR-900 (0.02)	0.2ª	RhB (20)	14	100	15.05	This work

Fig. S28 Summary of catalytic performances of some recently reported catalysts under different reaction conditions (PMS or H_2O_2 dosage and reaction time)

Catalyst dosage	PMS ^a /H ₂ O ₂ ^b	Pollutant	Reaction time	Removal	Turnover frequencies	TOC removal	Daf
(g L ⁻¹)	dosage (g L ⁻¹)	(mg L ⁻¹)	(min)	efficiency (%)	(min ⁻¹)	(Reaction time)	Kel.
Mn _{0.3} Co _{2.7} S ₄	0.23	SMT (55)	120	07	4.5.4	250//120	24
(0.08)	0.3"	SM1 (55)	120	97	4.54	23%/120 min	21
$\operatorname{FeS}_{2}(2)$	0.6 ª	DEP (20)	120	100	0.064	50.5%/120 min	25
$CoS_2(0.08)$	0.4 ª	CIP (10)	60	100	1.5	20.7%/60 min	26
Co ₉ S ₈ @N-S-BC	0.53	SMX (20)	240	100	1.72	22.20//240	27
(0.2)	0.5"	SMA (20)	240	100	1.75	55.5%/240 min	27
Co ₉ S ₈ @NSBOC	0.20		(0)	00	0.24	27.500////0	26
(0.2)	0.2ª	MB (30)	60	98	0.34	27.59%/60 min	26
Co/Co ₉ S ₈ @N-S-	0.250		240	100	2.07	20.10//240	20
O-C (0.1)	0.25ª	SMX (10)	240	100	3.07	30.1%/240 min	29
CoS@GN-60	0.13		9	07.1	()	40 (40/ /0	30
(0.1)	0.1"	BPA (20)	8	97.1	6.2	40.64%/8 min	50
C-Co@SMR-900	0.03	D1 D (20)	14	100	15.05	22.558//20	This
(0.02)	0.2"	RhB (20)	14	100	15.05	23.55%/30 min	work
C-Co@SMR-900	0.25		1.4	100	11.07	75 100/ //0	This
(0.08)	0.2ª	KhB (20)	14	100	11.06	/3.18%/60 min	work

 Table S10. The catalytic performance comparison of recently reported metal

 sulfide/carbon-based Fenton-like catalysts.

5						
Classification	Catalysts	Materials	Amount used (g)	Unit cost (dollar)	Total cost (dollar)	Ref.
		Co(NO ₃) ₂ ·6H ₂ O	2.448	0.098		
		$Cu(NO_3)_2 \cdot 3H_2O$	0.294	0.151	0.050	21
	C-CoCu-HNC ^a	2-methyl imidazole	4.189	0.106	2.258	31
		methanol	306 mL	0.005		
		CoCl ₂ ·6H ₂ O	0.553	0.044		
		titanium isopropoxide	2.183	0.028		
Co(II) doped TiO2 ^a Metallic oxides		28.631				
	Co(II) doped TiO ₂ ^a	glycerol	mL	0.018	1.389	14
			14.315	0.055		
		ethylenediamine	mL			
		Co(NO ₃) ₂ ·6H ₂ O	0.583	0.098		
	CoFe₂O₄/TNTs °	Fe(NO ₃) ₃ ·9H ₂ O	1.614	0.013		9
		citrate acid	0.841	0.008		
		ethanol	N/A	0.005	0.225	
		TiO ₂	0.5	0.013		
		NaOH	6.667	0.020		
		hydroxyapatite	1	15.387		
	Co-HAP-2 ^b	Co(NO ₃) ₂ ·6H ₂ O	0.728	0.098	15.458	20
		Co(NO ₃) ₂ ·6H ₂ O	0.16	0.098		
		2-methyl imidazole	0.391	0.106		
Metal/carbon	Cal-ZIF-67/AC ^b	methanol	16.5 mL	0.005	0.155	11
hybrid		activated carbon pellets (10–60 mush)	1.2	0.013		
	AgBiO ₃ /GO/NCDs-2 ^b	AgNO ₃	0.349	2.031	4.413	13

Table S11. Estimated total cost for preparing 1 g of recently reported Fenton-like catalysts.

		NaBiO ₃ ·2H ₂ O	0.734	1.384		
		graphene oxide	0.010	339.657		
		citrate acid	0.005	0.008		
		ethylenediamine	0.002 mL	0.055		
		ethanol	N/A	0.005		
		Fe(NO ₃) ₃ ·9H ₂ O	0.502	0.013		
		50 wt.% Mn(NO ₃) ₂	0.890	0.015		
	30%-CNTs-Fe-Mn-0.5 ^b	acetone	157.35 mL	0.004	1.182	17
		CNTs	0.2	2.192		
		30 wt.% HNO ₃	31.47 mL	0.003		
	C-Co@SMR-900 ^b I-FeN _x /g-C ₃ N ₄ -5 ^c	κ-Carrageenan	0.941	0.020	0.0(5	This
Metal cluster		CoCl ₂ ·6H ₂ O	1.058	0.044	0.065	work
		FeSO ₄ ·7H ₂ O	0.272	0.009		
		2-methyl imidazole	1.284	0.106		
		polyvinylpyrrolidone	1.175	0.061	0.259	21
		methanol	3.264 mL	0.005		
		melamine	2.055	0.016		
Single stem	Cu C N	ethanol	N/A	0.005		
		cyanamide	2	0.050	0 143	22
Single atom	Cu-C ₃ N ₄	$Cu(NO_3)_2$ ·3H ₂ O	0.287	0.151	0.145	
		sewage sludge	N/A	N/A		
Metal-free	NH ₃ -S600-KOH	КОН	2.805	0.012	4.033	12
		NH4OH	100 mL	0.040		

^a calculated by XPS.

^b calculated by ICP-MES.

^c calculated by TG.

^d calculated by EDX spectrum

Classification	Catalwata	Harmful solvents	Preparation procedures	Energy-intensive	Ref.	
Classification	Catalysis		(steps)	steps		
Metallic oxides		methanol	7	ultrasonication;	31	
	C-CoCu-HNC ^a			high-speed		
				centrifugation		
	Co(II) doped TiO ₂ ^a	glycerol	4	centrifugation	14	
				Centrifugation;		
	CoFe ₂ O ₄ /TNTs ^c Co-HAP-2 ^b	Ethanol; NaOH	-	ultrasonication;	0	
		solution (10 M)		evaporation;	7	
				calcined at 350 °C		
		-	4	Oven drying;	20	
				calcined at 500 °C	20	
	Cal-ZIF-67/AC ^b	methanol	5	Ultrasonication;	11	
				centrifugation;		
				calcined at 500 °C		
	AgBiO ₃ /GO/NCDs-2 ^b	ethanol	9	freeze-drying;	13	
Metal/carbon hybrid				centrifugation	15	
	30%-CNTs-Fe-Mn-0.5 ^b	Acetone; HNO ₃	<i>,</i>	evaporation; oven	17	
		solution	0	drying	17	
	C-Co@SMR-900	-	4	freeze-drying;	This	
				calcined at 900 °C	work	
Metal cluster	I-FeN _x /g-C ₃ N ₄ -5			Centrifugation; ball	21	
		Methanol;	<i>,</i>	milling; oven		
		ethanol	6	drying; calcined at		
				600 °C;		
Single atom	Cu-C ₃ N ₄	-	2	calcined at 560 °C	22	

Table S12. Estimated feasibility and sustainability of recently reported Fenton-like catalysts.

		KOH solution			
Metal-free	NH ₃ -S600-KOH	(0.5 M); NH ₄ OH	4	Oven drying;	12
		solution (7 M)			

Fig. S29 (a) Photograph of the experimental setup. (b) Photograph of the C-Co@SMR-900/PVDF composite membrane loaded processing cell.

References

- S. Huang, Y. Meng, S. He, A. Goswami, Q. Wu, J. Li, S. Tong, T. Asefa and M. Wu, *Adv. Funct. Mater.*, 2017, 27, 1606585.
- X. Li, X. Huang, S. Xi, S. Miao, J. Ding, W. Cai, S. Liu, X. Yang, H. Yang, J. Gao, J. Wang, Y. Huang, T. Zhang and B. Liu, *J. Am. Chem. Soc.*, 2018, 140, 12469-12475.
- Y. Wang, C. Liu, Y. Zhang, W. Meng, B. Yu, S. Pu, D. Yuan, F. Qi, B. Xu and W. Chu, *Appl. Catal.*, *B*, 2018, 235, 264-273.
- 4. M. M. Mian, G. Liu, B. Fu and Y. Song, *Appl. Catal.*, *B*, 2019, **255**, 117765.
- R. Guo, Y. Wang, J. Li, X. Cheng and D. D. Dionysiou, *Appl. Catal.*, *B*, 2020, 278, 119297.
- S. Guo, H. Wang, W. Yang, H. Fida, L. You and K. Zhou, *Appl. Catal.*, *B*, 2020, 262, 118250.
- 7. L. Jiang, Y. Zhang, M. Zhou, L. Liang and K. Li, *J. Hazard. Mater.*, 2018, **358**, 53-61.
- L. Zeng, L. Xiao, X. Shi, M. Wei, J. Cao and Y. Long, *J. Colloid Interface Sci.*, 2019, **534**, 586-594.
- 9. Y. Du, W. Ma, P. Liu, B. Zou and J. Ma, J. Hazard. Mater., 2016, 308, 58-66.
- 10. P. Shao, X. Duan, J. Xu, J. Tian, W. Shi, S. Gao, M. Xu, F. Cui and S. Wang, *J. Hazard. Mater.*, 2017, **322**, 532-539.
- 11. Y. Li, X. Yan, X. Hu, R. Feng and M. Zhou, Chem. Eng. J., 2019, 375, 122003.
- 12. M. M. Mian and G. Liu, *Chem. Eng. J.*, 2020, **392**, 123681.
- 13. X. Yue, X. Miao, X. Shen, Z. Ji, H. Zhou, Y. Sun, K. Xu, G. Zhu, L. Kong, Q. Chen, N. Li and X. He, *J. Colloid Interface Sci.*, 2019, **540**, 167-176.
- 14. H. Wang, Q. Gao, H. Li, B. Han, K. Xia and C. Zhou, *Chem. Eng. J.*, 2019, **368**, 377-389.
- 15. L. Wang, X. Guo, Y. Chen, S. Ai and H. Ding, *Appl. Surf. Sci.*, 2019, **467**, 954-962.
- 16. Z.-S. Zhu, J. Qu, S.-M. Hao, S. Han, K.-L. Jia and Z.-Z. Yu, *ACS Appl. Mater*. *Interfaces*, 2018, **10**, 30670-30679.
- 17. X. Tian and L. Xiao, J. Colloid Interface Sci., 2020, 580, 803-813.
- L. Ge, Z. Peng, W. Wang, F. Tan, X. Wang, B. Su, X. Qiao and P. K. Wong, J. Mater. Chem. A, 2018, 6, 16421-16429.
- 19. D. Pan, F. Mou, X. Li, Z. Deng, J. Sun, L. Xu and J. Guan, *J. Mater. Chem. A*, 2016, **4**, 11768-11774.
- 20. Y. Pang, L. Kong, D. Chen, G. Yuvaraja and S. Mehmood, *J. Hazard. Mater.*, 2020, **384**, 121447.
- S. An, G. Zhang, T. Wang, W. Zhan, K. Li, C. Song, J. T. Miller, S. Miao, J. Wang and X. Guo, *ACS Nano*, 2018, **12**, 9441-9450.
- J. Xu, X. Zheng, Z. Feng, Z. Lu, Z. Zhang, W. Huang, Y. Li, D. Vuckovic, Y. Li, S. Dai, G. Chen, K. Wang, H. Wang, J. K. Chen, W. Mitch and Y. Cui, *Nat. Sustainability*, 2021, 4, 233-241.
- 23. M. Wang, Q. Gao, M. Zhang, Y. He, Y. Zhang, R. Shen, J. Hu and G. Wu, J. *Mater. Chem. A*, 2021, **9**, 2308-2318.

- 24. H. Jiang, C. Q. Zhu, Y. Yuan, C. L. Yue, C. Ling, F. Q. Liu and A. M. Li, *Chem. Eng. J.*, 2020, **384**, 123302.
- Y. Zhou, X. L. Wang, C. Y. Zhu, D. D. Dionysiou, G. C. Zhao, G. D. Fang and D. M. Zhou, *Water Res.*, 2018, 142, 208-216.
- 26. W. Q. Li, S. Q. Li, Y. Tang, X. L. Yang, W. X. Zhang, X. D. Zhang, H. X. Chai and Y. M. Huang, *J. Hazard. Mater.*, 2020, **389**, 121856.
- 27. S. Z. Wang and J. L. Wang, Chem. Eng. J., 2020, 385, 123933.
- 28. G. X. Zhu, J. L. Zhu, Q. Liu, X. L. Fu, Z. Y. Chen, K. Li, F. Y. Cao, Q. Qin and M. L. Jiao, *Phys. Chem. Chem. Phys.*, 2021, 23, 5283-5297.
- 29. S. Z. Wang, H. Y. Liu and J. L. Wang, J. Hazard. Mater., 2020, 387, 121669.
- 30. C. Q. Zhu, F. Q. Liu, C. Ling, H. Jiang, H. D. Wu and A. M. Li, *Appl. Catal., B*, 2019, **242**, 238-248.
- 31. S. Li, Y. Hou, Q. Chen, X. Zhang, H. Cao and Y. Huang, *ACS Appl. Mater. Interfaces*, 2020, **12**, 2581-2590.