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Cell Voltage Calculations.

The theoretical applied voltage for water splitting is 1.23 V. This conclusion applies only to the 

electrolyte with the same pH value in the anode and cathode chambers. However, assuming that OER is 

carried out in a neutral electrolyte (1.0 M KNO3) and HER in an acidic electrolyte (1 M HNO3) forming 

an asymmetric neutral-acidic electrolytic cell, the applied voltage for water splitting can be obtained by 

the following Nernst formula:

For water electrolysis in asymmetric neutral-acidic cell 

OER at the anode (1M KNO3, pH=7)
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HER at the cathode (1M HNO3, pH=0)
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The overall reaction:

222 OH2OH2OH4H4  
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when the anode OER was replaced by silver oxidation reaction (AOR)

AOR at the anode (1M KNO3 with 0.01 M KCl, pH=7):
  AgeAg

Ag+ will react with Cl- spontaneously: 
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HER at the cathode (1M HCl, pH=0)
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Overall reaction: 
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where R is 8.314 J K-1 mol-1 (molar gas constant), T is 298.15 K, n is 1 (the number of electrons 
transferred per mole of product), F is 96485 C mol-1 (Faradaic constant), and is the corresponding 
activity. 

If AOR at the anode (1M KNO3 with 0.025 M KCl, pH=7):
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If AOR at the anode (1M KNO3 with 0.05 M KCl, pH=7):
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If AOR at the anode (1M KNO3 with 0.075 M KCl, pH=7):
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If AOR at the anode (1M KNO3 with 0.1 M KCl, pH=7):
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According to theoretical calculation, the potential of practical application for asymmetric neutral-
acidic cell using AOR instead of OER is much lower than that of water splitting.



SUPPORTING INFORMATION        

4

Figure S1.  (a) LSV curves with different electrolytes. (b) Chronoamperometry curve for silver in 0.025 
M KCl at 2.5 V vs. RHE. (c) Photograph showing surface of the silver rod during the reaction. The 
silver electrode surface was covered with a thick white material, making it difficult to continue the 
reaction.

Figure S2. Photograph showing the changes of the silver rod during positive scanning from +0.7V (vs. 
RHE).

Figure S3. Photograph showing surface of the silver rod when the reaction is over.
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Figure S4. The polarization curves of silver electrode with different chloride ions concentration.

Figure S5. The phenomenon of silver electrode reaction with different chloride ions concentration.

Figure S6. Photograph of the actual electrochemical device. 
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Figure S7. (a) XRD pattern of Ag3PO4/AgCl. (b) XRD pattern of Ag2O/AgCl. (c) SEM images of 
Ag3PO4/AgCl. (d) SEM images of Ag2O/AgCl. Ag3PO4/AgCl appears as a flake and Ag2O/AgCl as a 
polyhedron.

Figure S8. Photograph showing the difference of Pt sheet electrode surface with and without chloride 
ions in electrolyte during the reaction: (a) no chloride ions in the electrolyte, (b) 0.01M chloride ions in 
the electrolyte.

Figure S9. SEM images of silver rod after the reaction.



SUPPORTING INFORMATION        

7

Figure S10. Durability measurement when silver and graphite rods were used as the anode and cathode, 
respectively. The measurements were carried out at a current of 10 mA.
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Table S1: Comparison of the electrolytic voltage between our work and the overall water splitting

Electrode materials Medium E (overall reaction) Reference

Anode：Sliver rod

Cathode： Pt sheet 

Anode ：1M KNO3+0.025M KCl

 Cathode ：1M HCl
1.1 at 10 mA cm-2 This work

Anode：Sliver rod

Cathode： Graphite rod 
1M HNO3+0.01M KCl

0.95 at 10 mA cm-2

1.37 at 250 mA cm-2

This work

NiFe LDH /DG 1.0 M KOH 1.5 at 20 mA cm-2 [1]

NiFeRu-LDH 1.0 M KOH 1.52 at 10 mA cm-2 [2]

NiFe LDH 1.0 M KOH 1.54 at 10 mA cm-2 [3]

NiVIr-LDH 1.0 M KOH 1.42 at 10 mA cm-2 [4]

NiFe(OH)x/FeS 1.0 M KOH 1.42 at 10 mA cm-2 [5]

FeP/Ni2P 1.0 M KOH 1.42 at 10 mA cm-2 [6]

Ni2P-NiP2 HNPs||NiFe-LDH 1.0 M KOH 1.48 at 10 mA cm-2 [7]

N-Ni3S2/NF||N-Ni3S2/NF 1.0 M KOH 1.48 at 10 mA cm-2 [8]

Cu@NiFe LDH || Cu@NiFe LDH 1.0 M KOH 1.54 at 10 mA cm-2 [9]

MoS2/Ni3S2 1.0 M KOH 1.56 at 10 mA cm-2 [10]

Ni0.1Co0.9P 1.0 M PBS 1.89 at 10 mA cm-2 [11]

CoO/CoSe2 1.0 M PBS 2.18 at 10 mA cm-2 [12]
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