Supplementary Information

Bonding Heterogeneity in Mixed-Anion Compounds Realizes Ultralow Lattice Thermal Conductivity

Naoki Sato, * Norihide Kuroda, Shun Nakamura, Yukari Katsura, Ikuzo Kanazawa, Kaoru Kimura, and Takao Mori

Dr. N. Sato International Center for Young Scientists (ICYS), National Institute for Materials Science (NIMS) 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan E-mail: SATO.Naoki@nims.go.jp.

Dr. N. Sato, Prof. Dr. T. Mori International Center for Materials Nanoarchitectonics (WPI-MANA), NIMS 1-1 Namiki, Tsukuba, Ibaraki 305-0047, Japan

N. Kuroda, S. Nakamura, Prof. Dr. I. Kanazawa Department of Physics, Tokyo Gakugei University 4-1-1 Nukuikitamachi, Koganei, Tokyo 184-8501, Japan

Dr. Y. Katsura Research and Services Division of Materials Data and Integrated System (MaDIS), NIMS 1-1 Namiki, Tsukuba, Ibaraki 305-0047, Japan

Prof. Dr. K. Kimura, Dr. Y. Katsura Department of Advanced Materials Science, The University of Tokyo 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan

Prof. Dr. K. Kimura OPERANDO-OIL, National Institute of Advanced Industrial Science and Technology (AIST) 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan

Prof. Dr. T. Mori Graduate School of Pure and Applied Science, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8671, Japan

Figure S1. The total charge density of (a) $MnSbS_2Cl$ and (b) $MnBiS_2Cl$ with isosurface value of 0.05 e bohr⁻³, and the electron localization function (ELF) of (c) $MnSbS_2Cl$ and (d) $MnBiS_2Cl$ with isosurface value of 0.80 for (c) and 0.72 for (d), respectively. The black, red, purple, yellow, and green atoms represent Mn, Sb, Bi, S, and Cl, respectively.

Figure S2. The calculated potential energy of each atomic site as a function of displacements along cartesian x-, y-, and z-directions for MnSbS₂Cl, MnBiS₂Cl, and CuTaS₃ with fitting curves using only quadratic term.

Figure S3. The calculated potential energy of each atomic site as a function of displacements along cartesian x-, y-, and z-directions for MnSbS₂Cl, MnBiS₂Cl, and CuTaS₃.

Figure S4. The calculated mean square displacement as a function of temperature along cartesian x-, y-, and z-directions for MnSbS₂Cl, MnBiS₂Cl, and CuTaS₃.

Figure S5. The calculated phonon group velocity as a function of the phonon frequency for MnSbS₂Cl, MnBiS₂Cl, and CuTaS₃.

Figure S6. The calculated spectral lattice thermal conductivity, κ_{spec} , as a function of the phonon frequency for MnSbS₂Cl, MnBiS₂Cl, and CuTaS₃.

Figure S7. The XRD patterns of the polycrystalline bulk samples prepared by SPS for MnSbS₂Cl, MnBiS₂Cl, and CuTaS₃, together with their simulated patterns. Black arrows denote unknown impurity phases.

Table S1. Lattice parameters of the relaxed primitive cell of MnSbS₂Cl, MnBiS₂Cl, and CuTaS₃.

Material	a (Å)	b (Å)	c (Å)
MnSbS ₂ Cl	9.1800	3.7704	12.039
MnBiS ₂ CI	9.1672	3.8346	12.111
CuTaS₃	9.3918	3.4628	11.688