Electronic Supplementary Information (ESI)

Effects of low doping on the improvement of cathode materials

$Na_{3+x}V_{2-x}M_x(PO_4)_3$ (M = Co²⁺, Cu²⁺; x = 0.01-0.05) for SIBs

Ruoyu Chen^a, Denys S. Butenko,^a Shilin Li^a, Dongdong Li^a, Xinyu Zhang,^b Junming Cao,^a Ivan V. Ogorodnyk,^c Nickolai I. Klyui,^{d,e} Wei Han^{a*} and Igor V. Zatovsky^{d*}

^a College of Physics, the State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, International Center of Future Science, Jilin University, Changchun 130012, P.R. China.

^b Innovation Center of Computational Physics Methods and Software & State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, P.R. China.

^c ShimUkraine LLC, 18, Chigorina Str., office 429, 01042 Kyiv, Ukraine.

^d College of Physics, Jilin University, 2699 Qianjin st., 130012 Changchun, R.P. China.

^e V. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, 41 pr. Nauki, 03028 Kyiv, Ukraine.

E-mail: whan@jlu.edu.cn (Wei Han*) zvigo@yndex.ru (Igor V. Zatovsky*)

Figure S1. XRD Rietveld refinement for (a) $Na_{3.01}V_{1.99}Co_{0.01}(PO_4)_3/C$ and (b)

 $Na_{3.01}V_{1.99}Cu_{0.01}(PO_4)_3/C$ (circle signs (black) correspond to observed data; the solid line (red) is the calculated profile; tick marks (blue) represent the positions of allowed reflection; difference

curve (green) on the same scale is plotted at the bottom of the pattern).

Structural parameters obtained from XRD Rietveld refinement of samples $Na_{3.01}V_{1.99}Co_{0.01}(PO_4)_3/C$ and $Na_{3.01}V_{1.99}Cu_{0.01}(PO_4)_3/C$ (space group *R-3c*, *Z* = 6, occupancy of V/M sites was fixed in the refinement based on nominal chemical composition, bond distances are in Å, U_{iso} are Å²).

	Na _{3.01} V _{1.99} Co _{0.01} (PO ₄) ₃	Na _{3.01} V _{1.99} Cu _{0.01} (PO ₄) ₃
Na1 in 6b		
x y z	1/3 2/3 1/6	1/3 2/3 1/6
U_{iso}	0.120(10)	0.105(10)
occupancy	0.87(3)	0.98(3)
Na2 in 18 <i>e</i>		
x y z	2/3 0.9657(10) 1/12	2/3 0.9672(10) 1/12
U_{iso}	0.050(5)	0.054(5)
occupancy	0.696(10)	0.667(9)
V/M in 12 <i>c</i>		
x y z	1/3 2/3 0.01941(12)	1/3 2/3 0.01915(12)
U_{iso}	0.0053(10)	0.0082(10)
occupancy	0.99/0.01	0.99/0.01
P in 18 <i>e</i>		
x y z	-0.0437(4) 1/3 1/12	-0.0446(4) 1/3 1/12
U_{iso}	0.0066(13)	0.0132(13)
occupancy	1	1
O1 in 36 <i>f</i>		
x y z	0.1393(5) 0.5006(6) 0.0773(3)	0.1414(5) 0.4997(6) 0.0780(3)
U_{iso}	0.0052(17)	0.0082(16)
occupancy	1	1
O2 in 36 <i>f</i>		
x y z	0.5454(8) $0.8484(6) - 0.0264(2)$	0.5433(8) 0.8479(6) -0.0267(2)
U_{iso}	0.022(2)	0.020(2)
occupancy	1	1
Bond distance		
V–O	3 x 2.0007 3 x 2.0264	3 x 1.9887 3 x 2.0326
Р-О	1.4993 1.4994 2 x 1.5387	1.4944 1.4945 2 x 1.5472
Na1–O	3 x 2.5117 3 x 2.5118	3 x 2.4951 3 x 2.4952
Na2–O	2 x 2.3489 2 x 2.4753 2.6089 2.6090 2 x 2.8377 2 x 3.2559	2 x 2.3643 2 x 2.4601 2.6239 2.6240 2 x 2.8331 2 x 3.2287
R_p/R_{wp}	7.69/10.17	6.77/9.02

Samples	Lattice constant, Å				
Samples	а	С	V		
Na ₃ V ₂ (PO ₄) ₃	8.7173(5)	21.7873(14)	1433.83(14)		
$Na_{3.01}V_{1.99}Co_{0.01}(PO_4)_3$	8.7276(3)	21.7992(7)	1437.99(8)		
$Na_{3.03}V_{1.97}Co_{0.03}(PO_4)_3$	8.7172(5)	21.7856(15)	1433.69(15)		
$Na_{3.05}V_{1.95}Co_{0.05}(PO_4)_3$	8.7209(2)	21.7928(7)	1435.36(7)		
$Na_{3.01}V_{1.99}Cu_{0.01}(PO_4)_3$	8.7167(3)	21.8218(9)	1435.89(10)		
Na _{3.03} V _{1.97} Cu _{0.03} (PO ₄) ₃	8.7211(4)	21.7929(12)	1435.44(12)		
$Na_{3.05}V_{1.95}Cu_{0.05}(PO_4)_3$	8.7205(5)	21.7964(16)	1435.47(16)		

Crystal lattice parameters for $Na_{3+x}V_{2-x}M^{II}_{x}(PO_{4})_{3}/C$ ($M^{II} = Co^{2+}, Cu^{2+}; x = 0-0.05$).

Chemical composition	Molar ratio Na/V	
$Na_3V_2(PO_4)_3$ (pure)	1.5	
Doping of the V1 site with the simultaneous addition of sodium for Na site		
$Na_{3.01}V_{1.99}M^{11}_{0.01}(PO_4)_3$	1.513	
$Na_{3.03}V_{1.97}M^{II}_{0.03}(PO_4)_3$	1.538	
$Na_{3.05}V_{1.95}M^{II}_{0.05}(PO_4)_3$	1.564	
Doping of the Na1 site and the extraction of soc	dium from the Na sites	
$Na_{2.98}M^{II}_{0.01}V_2(PO_4)_3$	1.49	
$Na_{2.94}M^{II}_{0.03}V_2(PO_4)_3$	1.47	
$Na_{2.9}M^{11}_{0.05}V_2(PO_4)_3$	1.45	
Doping of the V1 site during the formation of h	eterovalent pair $M^{2+} + V^{4+}$	
(provides for a partial valence change in vanad	lium)	
$Na_{3}V_{1.99}M^{II}_{0.01}(PO_{4})_{3}$	1.508	
$Na_{3}V_{1.97}M^{II}_{0.03}(PO_{4})_{3}$	1.523	
$Na_{3}V_{1.95}M^{II}_{0.05}(PO_{4})_{3}$	1.538	

Theoretical ratios of Na, V, M^{II} , and P in M^{II} -NVP for various doping mechanisms.

Table S4.

ICP results for Co^{2+} doped $Na_3V_2(PO_4)_3$ samples.

Sample	Found	molar fr	action f	Molar ratio No/V	
	Na	V	Со	Р	
NVP (pure)	3.0301	2.1061	0	3.0703	1.4387
Co1-NVP	3.0105	1.9906	0.0098	3.1415	1.5124
Co5-NVP	3.0506	1.9465	0.0493	3.0762	1.5672

Figure S2. (a) SEM image of $Na_{3.03}V_{1.97}Co_{0.03}(PO_4)_3/C$; (b) SEM image of $Na_{3.05}V_{1.95}Co_{0.05}(PO_4)_3/C$; (c) SEM image and element mapping of $Na_{3.01}V_{1.99}Cu_{0.01}(PO_4)_3/C$.

Sampla	Number of cycles			
Sample	1	100		
NVP/C	93	88 (94.1%)		
Co1-NVP/C	116	107 (92.2%)		
Co3-NVP/C	108	103 (95.3%)		
Co5-NVP/C	106	95 (88.9%)		
Cu1-NVP/C	102	95 (93.4%)		
Cu3-NVP/C	114	100 (87.7%)		
Cu5-NVP/C	101	89 (87.9%)		
Co1-NVP/C Co3-NVP/C Co5-NVP/C Cu1-NVP/C Cu3-NVP/C Cu5-NVP/C	116 108 106 102 114 101	107 (92.2%) 103 (95.3%) 95 (88.9%) 95 (93.4%) 100 (87.7%) 89 (87.9%)		

The cycling performance of $Na_{3+x}V_{2-x}M^{II}_{x}(PO_{4})_{3}/C$ (M^{II} = Co, Cu) compounds at 0.5C in a potential range of 2.5–4.0 V, mAh/g (capacity retention is indicated in %).

Table S6.

The cycling performance of $Na_{3+x}V_{2-x}M^{II}_{x}(PO_{4})_{3}/C$ (M^{II} = Co, Cu) compounds at 10C in a potential range of 2.5–4.0 V, mAh/g (capacity retention is indicated in %).

Sample		Number of cycles				
Sampie -	1	100	500	1000		
NVP/C	756	74 (97.4 %)	73 (95.8 %)	71 (93.3 %)		
Co1-NVP/C	106	101 (94.8 %)	95 (89.3 %)	88 (83.2 %)		
Co3-NVP/C	97	95 (97.0 %)	86 (88.6 %)	78 (80.3 %)		
Co5-NVP/C	85	79 (92.0 %)	71 (83.5 %)	66 (77.4 %)		
Cu1-NVP/C	89	88 (98.1 %)	84 (93.7 %)	83 (93.1 %)		
Cu3-NVP/C	92	86 (93.8 %)	78 (84.6 %)	72 (78.8 %)		
Cu5-NVP/C	83	80.3 (96.9 %)	74 (89.9 %)	69 (82.6 %)		

Figure S3. Charging-discharging profiles of NVP/C at different rates.

Figure S4. Changing the capacity of electrodes with different doping at different rates: (a) Co²⁺doped and pure NVP (b) Cu²⁺-doped and pure NVP (c) comparison of Co²⁺ and Cu²⁺-doped samples.

Figure S5. (a) Nyquist plots of Na_{3+x}V_{2-x}Cu_x(PO₄)₃/C (x=0-0.05) after 100 cycles at 0.5 C (inset - the equivalent electrical circuit for the EIS); (b) Zwre and $\omega^{-1/2}$ relationship.

Table S7.

Kinetic parameters of $Na_{3+x}V_{2-x}M^{II}_{x}(PO_{4})_{3}/C$ (M^{II} = Co, Cu; x = 0–0.05) obtained from equivalent circuit fitting.

Sample	R_s/Ω	$\mathrm{R_p}/\Omega$
NVP/C	7.104	150.03
Co1-NVP/C	6.942	85.12
Co3-NVP/C	5.6	92.3
Co5-NVP/C	5.243	101.6
Cu1-NVP/C	4.786	113
Cu3-NVP/C	4.72	110.3
Cu5-NVP/C	5.038	143.1

Figure S6. Nyquist plots of $Na_{3+x}V_{2-x}Co_x(PO_4)_3/C$ (x = 0–0.05) before testing, inset, the equivalent electrical circuit for the EIS.

Table S8.

Kinetic parameters of $Na_{3+x}V_{2-x}Co_x(PO_4)_3/C$ before testing obtained from equivalent circuit fitting.

Sample	R_s/Ω	R_p/Ω
NVP/C	4.218	430.6
Co1-NVP/C	3.648	390.5
Co3-NVP/C	3.945	371.0
Co5-NVP/C	3.385	300.2

Calculations of the diffusion coefficient (D_{Na+}) of sodium ions

To estimate the diffusion coefficient of sodium ions (D_{Na+}) , the lowfrequency region of the EIS spectra is used. The diffusion kinetics can be determined according to the following equations:

$$D = \frac{R^2 T^2}{2A^2 n^4 F^4 C^2 \sigma^2}$$
 (S1),
$$Z' = R_s + R_p + \sigma \omega^{-1/2}$$
 (S2),

where *R* is the gas constant (8.314 J/molK), *T* stands for the absolute temperature (K), *A* is the contacting area of electrode with electrolyte (cm²), *n* is the number of transferred electrons, *F* is the Faraday constant (96500 C/mol), *C* is the concentration of Na ions in the cathode electrode (3.47 x 10⁻³ mol/cm⁻³), given the chemical composition of the active material, σ is the Warburg factor which can be calculated from *Z'*. The D_{Na⁺} can be calculated from equation (S1), σ is related to *Z'* through equation (S2), and its value can be determined from the slope of the line between *Z'* and $\sigma^{1/2}$.

Sample	D (cm ² /s)
NVP/C	5.05 × 10 ⁻¹¹
Co1-NVP/C	1.06×10^{-10}
Co3-NVP/C	2.86×10^{-11}
Co5-NVP/C	6.34×10^{-11}
Cu1-NVP/C	4.49×10^{-11}
Cu3-NVP/C	3.81×10^{-11}
Cu5-NVP/C	3.28×10^{-11}

Sodium diffusion coefficients of $Na_{3+x}V_{2-x}M^{II}_x(PO_4)_3/C$ (M^{II} = Co, Cu; x = 0-0.05).

Table S10.

A comparison of the electrochemical performance of prepared Co- and Cu-doped NVP/C with the similar M^{2+} or M^{3+} -doped NVP electrodes.

Composition	Specific Capacity	Cycle	C-	Canacity	Ref.	
Composition	(mAh/g)	Number	rate	Retention (%)		
Co ²⁺ -doped NVP						
	116	100	0.5 C	92.2	This	
$Na_{3.01}V_{1.99}Co_{0.01}(PO_4)_3$	106	1000	10C	83.3	work	
	108	100	0.5 C	95.3	This	
$Na_{3.03}V_{1.97}Co_{0.03}(PO_4)_3$	97	1000	10C	80.3	work	
	106	100	0.5 C	88.9	This	
$Na_{3.05}V_{1.95}Co_{0.05}(PO_4)_3$	85	1000	10C	77.4	work	
$Na_{3,1}V_{1,9}Co_{0,1}(PO_4)_3$	111	100	1C	99	[49]	
Na _{3.5} V _{1.5} Co _{0.5} (PO ₄) ₃	83	100	1C	97	[49]	
Cu^{2+} -c	loped NVP					
No. $V = Cu = (\mathbf{PO})$.	102	100	0.5 C	93.4	This	
$133.01 \times 1.99 \ U_{0.01}(1 \ O_4)_3$	89	1000	10	83.2	work	
No $V = C u = (\mathbf{D} \mathbf{O})$	114	100	0.5 C	87.7	This	
$133.03 V_{1.97} Cu_{0.03} (FO_4)_3$	92	1000	10C	78.8	work	
No V Cu (DO)	101	100	0.5 C	87.9	This	
$133.05 V_{1.95} Cu_{0.05} (PO_4)_3$	83	1000	10C	82.6	work	
Ni^{2+} -d	oped NVP					
Na $\alpha V_{1} \alpha N_{1} \alpha (PO_{1})$	113.4	100	0.5C	90.5	[40]	
$143.03 \times 1.9/1410.03(1 \ 04)3$	107.1	100	1C	95.5	[40]	
$Na_{3}V_{1.97}Ni_{0.03}(PO_{4})_{3}$	98.1	50	5C	93.5	[52]	
$Na_{3.1}V_{1.9}Ni_{0.1}(PO_4)_3$	109	100	1C	94.7	[49]	
Mn^{2+} -d	loped NVP					
$\mathbf{M}_{\mathbf{n}} \mathbf{V} = \mathbf{M}_{\mathbf{n}} (\mathbf{D} \mathbf{O})$	89.2	100	10C	97.2	[2 0]	
$Na_3 v_{1.875} NIn_{0.025} (PO_4)_3$	86.7	100	15C	91.6	[38]	
$Na_{3}V_{1.9}Mn_{0.1}(PO_{4})_{3}$	78	50	10C	90	[69]	
$Na_{3}V_{1.8}Mn_{0.2}(PO_{4})_{3}$	77.8	10.000	30C	82	[70]	
Na_2V_1 $_7Mn_0$ $_2(PO_4)_2$	104	20	0.5C	-	[39]	
	92	20	2C	-		
$Mg^{2+-\alpha}$	doped NVP	50	2 00	0.1	FO (1)	
$Na_3V_{1.95}Mg_{0.05}(PO_4)_3$	86.2	50	20C	81	[36]	
Na ₃ V _{1.95} Mg _{0.05} (PO ₄) ₃	102	108		90.2	[37]	
$N_{\alpha} V M_{\alpha} (DO)$	96.7	180	10C	88.9	 [5]]	
Na ₃ V $_{1.93}$ Ng $_{0.07}$ (PO ₄) ₃	95 112	1000	100	84.0 04	[31]	
Na _{3.1} V $_{1.9}$ Ng $_{0.1}$ (PO $_{4}$) $_{3}$	113	100	10	94 07	[49] [40]	
$133.5 \times 1.51 \times 120.5 (104)3$ $41^{3+} - 41^{3+}$	oned NVP	100	iC	71	[+7]	
$Na_2V_{1,00}Al_{0,00}(PO_4)_2$	95.8	50	0.6C	99 2	[42]	
$Na_3V_{1,8}Al_{0,2}(PO_4)_2$	117.1	100	1C	95	[72]	
Cr^{3+} -doped NVP					L' - J	
$Na_{3}V_{1.92}Cr_{0.08}(PO_{4})_{3}$	112.2	50	0.1C	97.2	[45]	
$Na_3V_{1.9}Cr_{0.1}(PO_4)_3$	107	40	2C	99	[18]	
La ³⁺ -doped NVP						
Na ₃ V _{1.99} La _{0.01} (PO ₄) ₃	108.1	100	0.2C	97	[46]	