Supporting Information

Mechanistic Investigation of Redox Processes in Zn-MnO₂ Batteries in Mild Aqueous Electrolytes

‡Ismael A. Rodríguez-Pérez, ‡Hee Jung Chang*, ‡Matthew Fayette*, Bhuvaneswari M. Sivakumar, Daiwon Choi, Xiaolin Li, David Reed*

Energy & Environment Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA

KEYWORDS: Zinc-ion batteries, EMD cathode, EQCM, Proton insertion, energy storage mechanism

Corresponding Author

*E-mail: Ismael.rodriguezperez@pnnl.gov, heejung.chang@pnnl.gov,

matthew.fayette@pnnl.gov

Figure S1: (a) CV curves of EMD cathode at different scan rates in 1M ZnSO₄ + 0.1M MnSO₄. (b) Log current vs Log scan rate plots for each redox process on EMD cathode.

Table S1. ICP of EMD (pristine sample and pristine soaked sample) in 1 M $ZnSO_4$ electrolyte. The "dilute times" resemble how many times the sample was diluted for the ICP, i.e. if an original sample was 1 ml, a "dilute times" (with DI water) of 100 would signify a total of 100 ml final solution.

EMD Sample	Dilute times	Conc. of the elements (mol/L)		Conc. (ppm)	of the elements	-
		Zn	Mn	Zn	Mn	
Pristine	500	9.34E-5	8.87E-3	0.006	0.975	
Pristine after soaked	500	4.15E-4	6.21E-3	0.027	0.682	

Figure S2: CV curves of EMD cathode in $1M ZnSO_4 + 0.1M MnSO_4$ when oxidation of CV was first performed.

Figure S3. SEM and EDX images of EMD electrode in 1M ZnSO₄ + 0.1M MnSO₄ discharged at

C/3.