— Supplementary Information — Defect Chemistry and Doping of BiCuSeO

Michael Y. Toriyama,^{*,†} Jiaxing Qu,[‡] G. Jeffrey Snyder,[†] and Prashun Gorai^{*,¶}

†Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.

‡Mechanical Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801.

¶Metallurgical and Materials Engineeering, Colorado School of Mines, Golden, CO 80401, USA.

E-mail: MichaelToriyama2024@u.northwestern.edu; pgorai@mines.edu

Pristine and Interstitial Structures

Figure S1: (a) Crystal structure of BiCuSeO, (b) Structure of copper interstitial (Cu_i^{+1}) , and (c) Structure of oxygen interstitial (O_i^0) .

Calculated Lattice Parameters

Method	a (Å)	c (Å)	a Error (%)	c Error (%)
PBE + U	3.949	9.062	0.52	1.49
vdW + U	3.926	8.927	0.08	0.02
$\operatorname{Experiment}^1$	3.929	8.929		

Table S1: Lattice constants calculated using different functionals and compared to experimental values.¹ The experimental lattice constants are better reproduced with the van der Waals-corrected functional with Hubbard U correction (vdW+U).

Electronic Structure of BiCuSeO

Figure S2: Computed electronic band structure of BiCuSeO along the special k-point paths of the Brillouin zone. The band edge positions are rigidly shifted to according to GW and spin-orbit coupling calculations.

Elemental Reference Chemical Potentials

Element	$\mu^0 \ (eV)$
Bi	-4.42
Cu	-1.65
Se	-3.63
0	-4.76
Li	-1.64
Zn	-0.80
Mg	-1.00
Ca	-1.60
\mathbf{Sr}	-1.15
Ba	-1.34
Al	-2.81
Ga	-2.30
In	-2.27
Tl	-2.35
Si	-4.74
Ge	-4.07
Sn	-3.65
Pb	-3.79
\mathbf{Sc}	-4.49
Y	-4.81
Ti	-5.39
Zr	-5.97
Hf	-7.51
F	-1.52
Cl	-1.73
Br	-1.74
Ι	-1.67

Table S2: Elemental reference chemical potentials μ^0 , fitted to experimental formation enthalpies.^{2,3} GGA+U functional is used to calculate the total energy of the compounds used in the fitting.

Phase Equilibria of BiCuSeO

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$p-n~(\mathrm{cm}^{-3})$
Se, Cu_3Se_2 , Bi_2Se_3	-0.378	-0.62	-1.923	0.0	$7.36{\times}10^{19}$
Se, Bi_2O_2Se , Bi_2O_3	-0.602	-0.708	-1.61	0.0	$1.26{\times}10^{20}$
Se, Bi_2O_2Se , Bi_2Se_3	-0.378	-0.708	-1.835	0.0	$1.25{\times}10^{20}$
Se, Cu_3Se_2 , Bi_2O_3	-0.865	-0.62	-1.435	0.0	$7.48 { imes} 10^{19}$
Cu_2O , Cu_3Se_2 , Bi_2O_3	-0.603	-0.445	-1.61	-0.262	$2.6{\times}10^{19}$
Cu_2Se, Cu_2O, Cu_3Se_2	-0.285	-0.318	-1.864	-0.453	$1.13{\times}10^{19}$
$\mathrm{Bi},\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_2\mathrm{O}_3$	0.0	-0.244	-2.012	-0.664	5.61×10^{18}
Bi, Cu_2Se , Cu_2O	0.0	-0.223	-2.054	-0.643	$5.11{\times}10^{18}$
Bi, Cu_2Se , Cu_3Se_2	0.0	-0.318	-2.149	-0.453	$1.1{\times}10^{19}$
Bi, Cu_3Se_2, Bi_2Se_3	0.0	-0.452	-2.216	-0.252	$2.33{\times}10^{19}$
$\mathrm{Bi},\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{O}_3$	0.0	-0.507	-2.012	-0.402	$3.44{\times}10^{19}$
$\mathrm{Bi},\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{Se}_3$	0.0	-0.582	-2.087	-0.252	5.4×10^{19}

Table S3: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quaternary Bi-Cu-Se-O phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Native Defects in BiCuSeO

Figure S3: Formation energy (ΔE_{D^q}) as a function of Fermi energy (E_F) of all native defects in BiCuSeO under the most Cu-rich condition where BiCuSeO is in equilibrium with Bi, Cu₂Se, and Cu₂O.

Group-2 Doping: Mg, Ca, Sr, Ba

Figure S4: Formation energy of defects associated with (a) Mg, (b) Ca, (c) Sr, and (d) Ba doping under the most Cu-poor and dopant-rich conditions i.e., phase regions that yield the highest hole concentrations. BiCuSeO is in equilibrium with the following phases: (a) Se, MgO, Bi₂O₂Se, and Bi₂O₃, (b) Se, CaO, Cu₃Se₂, and CaSeO₃, (c) SrSeO₃, SrSe, Bi₂O₅Sr₂, and Cu₃Se₂, and (d) BaCu₂Se₂, BaSeO₃, Cu₃Se₂, and Ba₂Bi₄O₈. Native defects of BiCuSeO (Figure 2 in the main text) are shown in lighter colors. The valence band maximum (VBM) is shown as the vertical solid line at $E_{\rm F} = 0$. The equilibrium Fermi energy ($E_{\rm F}^{\rm eq}$) is shown as the dotted vertical line.

Group-17 Doping: F

Figure S5: Formation energy of defects associated with F doping under the most Cu-rich condition, where BiCuSeO is in equilibrium with Bi, Cu₂O, Cu₂Se, and BiFO. Native defects of BiCuSeO (Figure 2 in main text) are shown in lighter colors. The equilibrium Fermi energy $(E_{\rm F}^{\rm eq})$, as determined by charge neutrality at 973 K, is marked with a dotted vertical line.

Group-1 Doping: Li

Figure S6: Formation energy of defects associated with Li doping in BiCuSeO under the most Cu-rich condition where BiCuSeO is in equilibrium with Bi, Cu₂O, Bi₂O₃, and Cu₈Li₈O₈. Native defects of BiCuSeO (Figure 2 in main text) are shown in lighter colors. The equilibrium Fermi energy $(E_{\rm F}^{\rm eq})$, as determined by charge neutrality at 973 K, is marked with a dotted vertical line.

Group-12 Doping: Zn

Figure S7: Formation energy of defects associated with Zn doping in BiCuSeO under the thermodynamic conditions where BiCuSeO is in equilibrium with Bi, Cu₃Se₂, ZnSe, and ZnO. Native defects of BiCuSeO (Figure 2 in main text) are shown in lighter colors. The equilibrium Fermi energy $(E_{\rm F}^{\rm eq})$, as determined by charge neutrality at 973 K, is marked with a dotted vertical line.

Group-3 Doping: Sc, Y

Figure S8: Formation energy of defects associated with (a) Sc, and (b) Y doping in BiCuSeO under the most Cu-rich conditions where BiCuSeO is in equilibrium with (a) Bi, Cu₂Se, Cu₂O, and CuO₂Sc, and (b) Bi, Cu₂Se, Cu₂O, and Y₂O₃. Native defects of BiCuSeO (Figure 2 in main text) are shown in lighter colors. The equilibrium Fermi energy $(E_{\rm F}^{\rm eq})$, as determined by charge neutrality at 973 K, is marked with a dotted vertical line.

Group-4 Doping: Ti, Zr, Hf

Figure S9: Formation energy of defects associated with (a) Ti, (b) Zr, and (c) Hf doping in BiCuSeO under Cu-rich conditions where BiCuSeO is in equilibrium with (a) Bi, Cu₂Se, Cu₂O, and Bi₂O₇Ti₂, (b) Bi, Cu₂Se, Cu₂O, and ZrO₂, and (c) Bi, Cu₂Se, Cu₂O, and HfO₂. Native defects of BiCuSeO (Figure 2 in main text) are shown in lighter colors. The equilibrium Fermi energy $(E_{\rm F}^{\rm eq})$, as determined by charge neutrality at 973 K, is marked with a dotted vertical line.

Group-13 Doping: Al, Ga, In, and Tl

Figure S10: Formation energy of defects associated with (a) Al, (b) Ga, (c) In, and (d) Tl doping in BiCuSeO under Cu-rich conditions where BiCuSeO is in equilibrium with (a) Bi, Cu₂Se, Cu₂O, and AlCuO₂, (b) Bi, Cu₂Se, Cu₂O, and CuGaO₂, (c) Bi, Cu₂Se, Cu₂O, and CuInO₂, and (d) Bi, Cu₂Se, Cu₂O, and Cu₂Se₂Tl. Native defects of BiCuSeO (Figure 2 in main text) are shown in lighter colors. The equilibrium Fermi energy $(E_{\rm F}^{\rm eq})$, as determined by charge neutrality at 973 K, is marked with a dotted vertical line.

Figure S11: Formation energy of defects associated with (a) Si, (b) Ge, (c) Sn, and (d) Pb doping in BiCuSeO under Cu-rich conditions where BiCuSeO is in equilibrium with a) Bi, Cu₂Se, Cu₂O, and Bi₄O₁₂Si₃, (b) Bi, Cu₂Se, Cu₂O, and Bi₄Ge₃O₁₂, (c) Bi, Cu₂O, Bi₂O₇Sn₂, and Cu₂Se, and (d) Bi, PbSe, Cu₃Se₂, and Bi₂Se₃. Native defects of BiCuSeO (Figure 2 in main text) are shown in lighter colors. The equilibrium Fermi energy $(E_{\rm F}^{\rm eq})$, as determined by charge neutrality at 973 K, is marked with a dotted vertical line.

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm Mg}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$p-n~(\mathrm{cm}^{-3})$
Se, MgO, Cu_3Se_2 , Bi_2Se_3	-0.378	-0.62	-4.323	-1.923	0.0	$7.39{\times}10^{19}$
Se, MgO, Bi_2O_2Se , Bi_2O_3	-0.602	-0.708	-4.636	-1.61	0.0	$1.26{\times}10^{20}$
Se, MgO, $\operatorname{Bi}_2\operatorname{O}_2\operatorname{Se}$, $\operatorname{Bi}_2\operatorname{Se}_3$	-0.378	-0.708	-4.411	-1.835	0.0	$1.25{\times}10^{20}$
Se, MgO, Cu_3Se_2 , Bi_2O_3	-0.865	-0.62	-4.811	-1.435	0.0	$7.53{\times}10^{19}$
Bi, MgO, Bi_2O_2Se , Bi_2Se_3	0.0	-0.582	-4.159	-2.087	-0.252	$5.39{\times}10^{19}$
Bi, Cu_2Se , MgO, Cu_2O	0.0	-0.223	-4.192	-2.054	-0.643	$5.24{\times}10^{18}$
Bi, MgO, Cu ₂ O, Bi ₂ O ₃	0.0	-0.244	-4.234	-2.012	-0.664	$5.67{\times}10^{18}$
Bi, MgO, Bi_2O_2Se , Bi_2O_3	0.0	-0.507	-4.234	-2.012	-0.402	3.45×10^{19}
Bi, MgO, Cu_3Se_2 , Bi_2Se_3	0.0	-0.452	-4.03	-2.216	-0.252	$2.36{\times}10^{19}$
Bi, Cu_2Se , MgO, Cu_3Se_2	0.0	-0.318	-4.097	-2.149	-0.453	$1.12{\times}10^{19}$
$\mathrm{MgO},\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_2\mathrm{O}_3$	-0.603	-0.445	-4.636	-1.61	-0.262	$2.63{\times}10^{19}$
$Cu_2Se, MgO, Cu_3Se_2, Cu_2O$	-0.285	-0.318	-4.382	-1.864	-0.453	$1.16{\times}10^{19}$

Phase Equilibria of Mg-Doped BiCuSeO

Table S4: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-Mg phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Ca}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$p - n \; ({\rm cm}^{-3})$
Se, CaO, Cu_3Se_2 , Bi_2Se_3	-0.378	-4.659	-0.62	-1.923	0.0	1.38×10^{21}
Se, CaO, CaO ₃ Se, Bi_2Se_3	-0.378	-4.723	-0.684	-1.859	0.0	$1.19{\times}10^{21}$
Se, Bi_2O_2Se , CaO_3Se , Bi_2Se_3	-0.378	-4.795	-0.708	-1.835	0.0	$8.89{ imes}10^{20}$
Se, CaO, Cu ₃ Se ₂ , CaO ₃ Se	-0.441	-4.723	-0.62	-1.859	0.0	$1.53{ imes}10^{21}$
Se, Cu_3Se_2 , Bi_2O_3 , CaO_3Se	-0.865	-5.995	-0.62	-1.435	0.0	7.65×10^{19}
Se, Bi_2O_2Se , Bi_2O_3 , CaO_3Se	-0.602	-5.47	-0.708	-1.61	0.0	1.45×10^{20}
Bi, CaO, Cu ₂ O, Bi ₂ O ₃	0.0	-4.57	-0.244	-2.012	-0.664	1.11×10^{20}
Bi, CaO, Cu ₂ Se, Cu ₂ O	0.0	-4.528	-0.223	-2.054	-0.643	1.41×10^{20}
Bi, CaO, Bi_2O_2Se , Bi_2Se_3	0.0	-4.495	-0.582	-2.087	-0.252	$3.88{ imes}10^{20}$
Bi, CaO, Bi_2O_2Se , Bi_2O_3	0.0	-4.57	-0.507	-2.012	-0.402	$2.53{ imes}10^{20}$
Bi, CaO, Cu ₃ Se ₂ , Bi ₂ Se ₃	0.0	-4.366	-0.452	-2.216	-0.252	4.48×10^{20}
Bi, CaO, Cu ₂ Se, Cu ₃ Se ₂	0.0	-4.433	-0.318	-2.149	-0.453	$3.44{ imes}10^{20}$
$\mathrm{CaO},\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{CaO}_3\mathrm{Se},\mathrm{Bi}_2\mathrm{Se}_3$	-0.354	-4.731	-0.7	-1.851	-0.016	$1.05{ imes}10^{21}$
$CaO, Cu_2Se, Cu_2O, Cu_3Se_2$	-0.285	-4.718	-0.318	-1.864	-0.453	$3.95{ imes}10^{20}$
$\mathrm{CaO},\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{O}_3,\mathrm{CaO}_3\mathrm{Se}$	-0.353	-4.806	-0.625	-1.776	-0.166	$7{\times}10^{20}$
$\mathrm{CaO},\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_2\mathrm{O}_3,\mathrm{CaO}_3\mathrm{Se}$	-0.485	-4.894	-0.406	-1.688	-0.341	$6.1{\times}10^{20}$
$Cu_2O, Cu_3Se_2, Bi_2O_3, CaO_3Se$	-0.603	-5.208	-0.445	-1.61	-0.262	$2.97{ imes}10^{20}$
$CaO, Cu_2O, Cu_3Se_2, CaO_3Se$	-0.496	-4.886	-0.402	-1.696	-0.327	6.81×10^{20}

Phase Equilibria of Ca-Doped BiCuSeO

Table S5: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-Ca phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$\Delta \mu_{\rm Sr}$	$p-n~(\mathrm{cm}^{-3})$
Bi, SeSr, Cu_3Se_2 , Bi_2Se_3	0.0	-0.452	-2.216	-0.252	-4.274	$5.95{\times}10^{20}$
$\mathrm{Bi},\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_2\mathrm{O}_3,\mathrm{Bi}_2\mathrm{O}_4\mathrm{Sr}$	0.0	-0.244	-2.012	-0.664	-4.72	$5.66{\times}10^{19}$
$\mathrm{Bi},\mathrm{Cu}_2\mathrm{Se},\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_2\mathrm{O}_4\mathrm{Sr}$	0.0	-0.223	-2.054	-0.643	-4.551	$1.2{\times}10^{20}$
Bi, Cu ₂ Se, Bi ₂ O ₅ Sr ₂ , Bi ₂ O ₄ Sr	0.0	-0.258	-2.089	-0.573	-4.411	$2.66{\times}10^{20}$
$\mathrm{Bi},\mathrm{Cu}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{O}_5\mathrm{Sr}_2,\mathrm{Cu}_3\mathrm{Se}_2$	0.0	-0.318	-2.149	-0.453	-4.261	$6.19{\times}10^{20}$
Bi, SeSr, $Bi_2O_5Sr_2$, Cu_3Se_2	0.0	-0.386	-2.183	-0.351	-4.175	$8.91{\times}10^{20}$
$O_3SeSr, SeSr, Cu_3Se_2, Bi_2Se_3$	-0.313	-0.591	-1.973	-0.043	-4.483	$1.7{\times}10^{21}$
$O_3SeSr, SeSr, Bi_2O_5Sr_2, Bi_2Se_3$	-0.256	-0.61	-1.973	-0.081	-4.445	$1.59{\times}10^{21}$
$O_3SeSr, Bi_2O_5Sr_2, Bi_2O_4Sr, Bi_2Se_3$	-0.242	-0.66	-1.927	-0.09	-4.573	$1.05{\times}10^{21}$
$O_3SeSr, Bi_2O_2Se, Bi_2O_4Sr, Bi_2Se_3$	-0.244	-0.663	-1.924	-0.089	-4.583	$1.02{\times}10^{21}$
$O_3SeSr, Cu_2O, Cu_3Se_2, Bi_2O_4Sr$	-0.474	-0.394	-1.712	-0.339	-4.968	$4.02{ imes}10^{20}$
$O_3SeSr, Bi_2O_5Sr_2, Cu_3Se_2, Bi_2O_4Sr$	-0.371	-0.445	-1.842	-0.262	-4.658	$1.09{\times}10^{21}$
$O_3SeSr, Cu_2O, Cu_3Se_2, Bi_2O_3$	-0.603	-0.445	-1.61	-0.262	-5.353	$1.29{\times}10^{20}$
$O_3SeSr, SeSr, Bi_2O_5Sr_2, Cu_3Se_2$	-0.289	-0.544	-1.973	-0.114	-4.412	$1.92{\times}10^{21}$
$O_3SeSr, Bi_2O_2Se, Bi_2O_3, Bi_2O_4Sr$	-0.356	-0.625	-1.774	-0.164	-4.958	$3.1{\times}10^{20}$
$O_3SeSr, Cu_2O, Bi_2O_3, Bi_2O_4Sr$	-0.487	-0.407	-1.687	-0.339	-5.045	$3.03{\times}10^{20}$
$Cu_2Se, Bi_2O_5Sr_2, Cu_3Se_2, Bi_2O_4Sr$	-0.18	-0.318	-1.969	-0.453	-4.531	$5.04{\times}10^{20}$
$Cu_2Se, Cu_2O, Cu_3Se_2, Bi_2O_4Sr$	-0.285	-0.318	-1.864	-0.453	-4.741	$3.4{\times}10^{20}$
Se, O_3 SeSr, Bi_2O_2 Se, Bi_2O_3	-0.603	-0.708	-1.61	0.0	-5.615	$1.29{\times}10^{20}$
Se, O_3 SeSr, Cu_3 Se ₂ , Bi_2O_3	-0.865	-0.62	-1.435	0.0	-6.14	$7.53{\times}10^{19}$
Se, O_3 SeSr, Bi_2O_2 Se, Bi_2Se_3	-0.378	-0.708	-1.835	0.0	-4.94	4.03×10^{20}
Se, O_3SeSr , Cu_3Se_2 , Bi_2Se_3	-0.378	-0.62	-1.923	0.0	-4.677	$1.22{\times}10^{21}$

Phase Equilibria of Sr-Doped BiCuSeO

Table S6: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-Sr phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{\rm Ba}$	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$p - n \; (\mathrm{cm}^{-3})$
Se, Bi_2Se_3 , BaO_3Se , Cu_3Se_2	-4.722	-0.378	-0.62	-1.923	0.0	8.82×10^{19}
Se, Bi_2Se_3 , Bi_2O_2Se , BaO_3Se	-4.985	-0.378	-0.708	-1.835	0.0	$1.25{\times}10^{20}$
Se, BaO_3Se , Cu_3Se_2 , Bi_2O_3	-6.185	-0.865	-0.62	-1.435	0.0	$7.5{\times}10^{19}$
Se, Bi_2O_2Se , BaO_3Se , Bi_2O_3	-5.66	-0.603	-0.708	-1.61	0.0	$1.26{\times}10^{20}$
$\operatorname{Bi}_2\operatorname{Se}_3$, BaSe , BaBiSe_3 , $\operatorname{BaCu}_2\operatorname{Se}_2$	-4.399	-0.169	-0.609	-2.003	-0.139	$1.12{\times}10^{20}$
$\operatorname{Bi}_2\operatorname{Se}_3$, $\operatorname{BaCu}_2\operatorname{Se}_2$, $\operatorname{BaO}_3\operatorname{Se}$, $\operatorname{Cu}_3\operatorname{Se}_2$	-4.643	-0.351	-0.608	-1.943	-0.018	9.45×10^{19}
$\operatorname{Bi}_2\operatorname{Se}_3$, BaBiSe_3 , $\operatorname{BaCu}_2\operatorname{Se}_2$, $\operatorname{BaO}_3\operatorname{Se}$	-4.448	-0.218	-0.617	-1.979	-0.106	$1.16{ imes}10^{20}$
$\operatorname{Bi}_2\operatorname{Se}_3$, BaSe , $\operatorname{Bi}_2\operatorname{O}_2\operatorname{Se}$, $\operatorname{BaO}_3\operatorname{Se}$	-4.389	-0.154	-0.633	-1.984	-0.149	$1.17{\times}10^{20}$
$\operatorname{Bi}_2\operatorname{Se}_3$, BaSe, BaBiSe ₃ , BaO ₃ Se	-4.399	-0.169	-0.628	-1.984	-0.139	$1.18{\times}10^{20}$
$\mathrm{Cu_2O},\mathrm{BaO_3Se},\mathrm{Cu_3Se_2},\mathrm{Ba_2Bi_4O_8}$	-4.706	-0.372	-0.353	-1.795	-0.401	$4.84{ imes}10^{19}$
$BaCu_2Se_2$, BaO_3Se , Cu_3Se_2 , $Ba_2Bi_4O_8$	-4.433	-0.281	-0.398	-1.908	-0.333	$1.33{\times}10^{20}$
Cu_2O , BaO_3Se , Cu_3Se_2 , Bi_2O_3	-5.398	-0.603	-0.445	-1.61	-0.262	$2.62{ imes}10^{19}$
Cu_2O , BaO_3Se , Bi_2O_3 , $Ba_2Bi_4O_8$	-4.844	-0.395	-0.376	-1.748	-0.401	$2.94{ imes}10^{19}$
$\operatorname{Bi}_2\operatorname{O}_2\operatorname{Se}$, $\operatorname{BaO}_3\operatorname{Se}$, $\operatorname{Bi}_2\operatorname{O}_3$, $\operatorname{Ba}_2\operatorname{Bi}_4\operatorname{O}_8$	-4.757	-0.264	-0.595	-1.836	-0.226	6.61×10^{19}
BaSe, Bi_2O_2Se , BaO_3Se , $Ba_2Bi_4O_8$	-4.386	-0.153	-0.632	-1.984	-0.152	$1.17{\times}10^{20}$
$BaSe, BaCu_2Se_2, BaO_3Se, Ba_2Bi_4O_8$	-4.357	-0.167	-0.588	-1.984	-0.181	$1.28{\times}10^{20}$
BaSe, BaBiSe ₃ , BaCu ₂ Se ₂ , BaO ₃ Se	-4.412	-0.194	-0.615	-1.984	-0.126	$1.2{\times}10^{20}$
$BaCu_2Se_2,Cu_3Se_2,Cu_2Se,Ba_2Bi_4O_8$	-4.353	-0.161	-0.318	-1.988	-0.453	8.68×10^{19}
$\mathrm{Cu}_2\mathrm{O},\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Cu}_2\mathrm{Se},\mathrm{Ba}_2\mathrm{Bi}_4\mathrm{O}_8$	-4.601	-0.285	-0.318	-1.864	-0.453	4.84×10^{19}
Bi, Cu ₂ O, Cu ₂ Se, Ba ₂ Bi ₄ O ₈	-4.411	0.0	-0.223	-2.054	-0.643	$1.93{ imes}10^{19}$
$\mathrm{Bi},\mathrm{BaCu_2Se_2},\mathrm{Cu_2Se},\mathrm{Ba_2Bi_4O_8}$	-4.246	0.0	-0.264	-2.095	-0.56	$5.07{\times}10^{19}$
$\mathrm{Bi},\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_2\mathrm{O}_3,\mathrm{Ba}_2\mathrm{Bi}_4\mathrm{O}_8$	-4.581	0.0	-0.244	-2.012	-0.664	$9.38{ imes}10^{18}$
$Bi, BaCu_2Se_2, Cu_3Se_2, Cu_2Se$	-4.353	0.0	-0.318	-2.149	-0.453	$3.76{\times}10^{19}$
$Bi, Bi_2Se_3, BaCu_2Se_2, Cu_3Se_2$	-4.487	0.0	-0.452	-2.216	-0.252	$2.87{ imes}10^{19}$
Bi, BaSe, BaCu ₂ Se ₂ , Ba ₂ Bi ₄ O ₈	-4.246	0.0	-0.532	-2.095	-0.292	$8.36{ imes}10^{19}$
$\mathrm{Bi},\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{O}_3,\mathrm{Ba}_2\mathrm{Bi}_4\mathrm{O}_8$	-4.581	0.0	-0.507	-2.012	-0.402	$3.6{\times}10^{19}$
Bi, BaSe, Bi_2O_2Se , $Ba_2Bi_4O_8$	-4.284	0.0	-0.581	-2.086	-0.254	8.02×10^{19}
$Bi, Bi_2Se_3, BaSe, Bi_2O_2Se$	-4.286	0.0	-0.582	-2.087	-0.252	8×10^{19}
$Bi, Bi_2Se_3, BaSe, BaCu_2Se_2$	-4.286	0.0	-0.553	-2.116	-0.252	7.29×10^{19}

Phase Equilibria of Ba-Doped BiCuSeO

Table S7: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-Ba phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm Li}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$p - n \; ({\rm cm}^{-3})$
Se, Cu_3Se_2 , Bi_2Se_3 , $Bi_8Li_{24}O_{24}$	-0.378	-0.62	-2.217	-1.923	0.0	$1.12{\times}10^{20}$
Se, Bi_2O_2Se , Bi_2O_3 , $BiLiO_2$	-0.603	-0.708	-2.509	-1.61	0.0	$1.44{ imes}10^{20}$
Se, Bi_2O_2Se , $BiLiO_2$, $Bi_8Li_{24}O_{24}$	-0.438	-0.708	-2.345	-1.775	0.0	$1.22{\times}10^{20}$
Se, $\operatorname{Bi}_2\operatorname{O}_2\operatorname{Se}$, $\operatorname{Bi}_2\operatorname{Se}_3$, $\operatorname{Bi}_8\operatorname{Li}_{24}\operatorname{O}_{24}$	-0.378	-0.708	-2.305	-1.835	0.0	$1.09{\times}10^{20}$
Se, Li_4O_5Se , Cu_3Se_2 , $Bi_8Li_{24}O_{24}$	-0.609	-0.62	-2.372	-1.691	0.0	$1.75{\times}10^{20}$
Se, Li_4O_5Se , Cu_3Se_2 , Bi_2O_3	-0.865	-0.62	-2.691	-1.435	0.0	$1.48{\times}10^{20}$
Se, Li_4O_5Se , $BiLiO_2$, $Bi_8Li_{24}O_{24}$	-0.594	-0.655	-2.397	-1.671	0.0	$1.57{\times}10^{20}$
Se, Li_4O_5Se , Bi_2O_3 , $BiLiO_2$	-0.676	-0.683	-2.534	-1.561	0.0	$1.48{ imes}10^{20}$
$\mathrm{Bi},\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{Se}_3,\mathrm{Bi}_8\mathrm{Li}_{24}\mathrm{O}_{24}$	0.0	-0.582	-2.179	-2.087	-0.252	4.61×10^{19}
$\mathrm{Bi},\mathrm{Bi}\mathrm{Li}\mathrm{O}_2,\mathrm{Cu}_8\mathrm{Li}_8\mathrm{O}_8,\mathrm{Bi}_8\mathrm{Li}_{24}\mathrm{O}_{24}$	0.0	-0.329	-2.199	-2.067	-0.525	$2.62{\times}10^{19}$
Bi, Bi_2O_2Se , $BiLiO_2$, $Bi_8Li_{24}O_{24}$	0.0	-0.562	-2.199	-2.067	-0.292	$4.48 { imes} 10^{19}$
Bi, Bi_2O_2Se , Bi_2O_3 , $BiLiO_2$	0.0	-0.507	-2.309	-2.012	-0.402	$3.57{\times}10^{19}$
Bi, Bi_2O_3 , $BiLiO_2$, $Cu_8Li_8O_8$	0.0	-0.274	-2.309	-2.012	-0.634	$1.53{\times}10^{19}$
$\mathrm{Bi},\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_2\mathrm{O}_3,\mathrm{Cu}_8\mathrm{Li}_8\mathrm{O}_8$	0.0	-0.244	-2.338	-2.012	-0.664	$1.28{\times}10^{19}$
Bi, Cu_2Se , Cu_2O , $Cu_8Li_8O_8$	0.0	-0.223	-2.317	-2.054	-0.643	1.41×10^{19}
${\rm Bi,\ Cu_3Se_2,\ Bi_2Se_3,\ Bi_8Li_{24}O_{24}}$	0.0	-0.452	-2.049	-2.216	-0.252	$4.26{\times}10^{19}$
Bi, Cu_2Se , Cu_3Se_2 , $Cu_8Li_8O_8$	0.0	-0.318	-2.127	-2.149	-0.453	$3.45{\times}10^{19}$
${\rm Bi,\ Cu_3Se_2,\ Cu_8Li_8O_8,\ Bi_8Li_{24}O_{24}}$	0.0	-0.329	-2.111	-2.155	-0.437	$3.66{\times}10^{19}$
$\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{BiLiO}_2,\mathrm{Cu}_8\mathrm{Li}_8\mathrm{O}_8,\mathrm{Bi}_8\mathrm{Li}_{24}\mathrm{O}_{24}$	-0.527	-0.505	-2.375	-1.715	-0.173	$1.23{\times}10^{20}$
$\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Bi}_2\mathrm{O}_3,\mathrm{Bi}\mathrm{Li}\mathrm{O}_2,\mathrm{Cu}_8\mathrm{Li}_8\mathrm{O}_8$	-0.692	-0.505	-2.539	-1.55	-0.173	$1.25{\times}10^{20}$
$\mathrm{Cu_2O},\mathrm{Cu_3Se_2},\mathrm{Bi_2O_3},\mathrm{Cu_8Li_8O_8}$	-0.603	-0.445	-2.539	-1.61	-0.262	$8.63{\times}10^{19}$
$Li_4O_5Se, Cu_3Se_2, Bi_2O_3, BiLiO_2$	-0.739	-0.536	-2.555	-1.519	-0.126	$1.43{ imes}10^{20}$
Li_4O_5Se , Cu_3Se_2 , $BiLiO_2$, $Bi_8Li_{24}O_{24}$	-0.63	-0.573	-2.409	-1.647	-0.071	$1.65{\times}10^{20}$
$\mathrm{Cu}_2\mathrm{Se},\mathrm{Cu}_2\mathrm{O},\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Cu}_8\mathrm{Li}_8\mathrm{O}_8$	-0.285	-0.318	-2.412	-1.864	-0.453	$3.66{\times}10^{19}$

Phase Equilibriua of Li-Doped BiCuSeO

Table S8: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-Li phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$\Delta \mu_{\rm Zn}$	$p-n~(\mathrm{cm}^{-3})$
Bi, Bi_2O_2Se , Bi_2Se_3 , $SeZn$	0.0	-0.582	-2.087	-0.252	-1.496	$6.54{\times}10^{18}$
Bi, Bi_2O_2Se , SeZn, OZn	0.0	-0.579	-2.084	-0.256	-1.492	$6.37{\times}10^{18}$
Bi, Cu_2Se , Cu_2O , OZn	0.0	-0.223	-2.054	-0.643	-1.522	$4.3{\times}10^{18}$
$\mathrm{Bi},\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_2\mathrm{O}_3,\mathrm{OZn}$	0.0	-0.244	-2.012	-0.664	-1.564	$4.94{\times}10^{18}$
$\mathrm{Bi},\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{O}_3,\mathrm{OZn}$	0.0	-0.507	-2.012	-0.402	-1.564	9.63×10^{18}
$\mathrm{Bi},\mathrm{Bi}_2\mathrm{Se}_3,\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{SeZn}$	0.0	-0.452	-2.216	-0.252	-1.496	$6.37{\times}10^{18}$
$\mathrm{Bi},\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{SeZn},\mathrm{OZn}$	0.0	-0.384	-2.182	-0.354	-1.394	$3.33{\times}10^{18}$
$\mathrm{Bi},\mathrm{Cu}_2\mathrm{Se},\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{OZn}$	0.0	-0.318	-2.149	-0.453	-1.427	$3.99{\times}10^{18}$
$Cu_2Se, Cu_2O, Cu_3Se_2, OZn$	-0.285	-0.318	-1.864	-0.453	-1.712	$1.04{\times}10^{19}$
$Cu_2O, Cu_3Se_2, Bi_2O_3, OZn$	-0.603	-0.445	-1.61	-0.262	-1.966	$2.55{\times}10^{19}$
Se, Cu_3Se_2 , Bi_2O_3 , OZn	-0.865	-0.62	-1.435	0.0	-2.141	$7.29{\times}10^{19}$
Se, Bi_2O_2Se , Bi_2Se_3 , $SeZn$	-0.378	-0.708	-1.835	0.0	-1.748	$2.89{ imes}10^{19}$
Se, Bi_2O_2Se , SeZn, OZn	-0.385	-0.708	-1.828	0.0	-1.748	$2.89{ imes}10^{19}$
Se, Bi_2O_2Se , Bi_2O_3 , OZn	-0.603	-0.708	-1.61	0.0	-1.966	$8.07{\times}10^{19}$
Se, Bi_2Se_3 , Cu_3Se_2 , $SeZn$	-0.378	-0.62	-1.923	0.0	-1.748	$2.76{\times}10^{19}$
Se, Cu_3Se_2 , SeZn, OZn	-0.472	-0.62	-1.828	0.0	-1.748	$2.77{\times}10^{19}$

Phase Equilibriua of Zn-Doped BiCuSeO

Table S9: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-Zn phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{ m Al}$	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$p - n \; ({\rm cm}^{-3})$
Se, Al_2O_3 , Bi_2Se_3 , Cu_3Se_2	-5.916	-0.378	-0.62	-1.923	0.0	$7.36{ imes}10^{19}$
Se, Bi_2O_2Se , Bi_2O_3 , $Al_4Bi_2O_9$	-6.484	-0.602	-0.708	-1.61	0.0	$1.26{\times}10^{20}$
Se, Bi_2O_2Se , Bi_2Se_3 , $Al_4Bi_2O_9$	-6.09	-0.378	-0.708	-1.835	0.0	$1.25{\times}10^{20}$
Se, Al_2O_3 , Bi_2Se_3 , $Al_4Bi_2O_9$	-5.962	-0.378	-0.651	-1.892	0.0	$8.88{\times}10^{19}$
Se, Al_2O_3 , Cu_3Se_2 , $Al_4Bi_2O_9$	-6.055	-0.47	-0.62	-1.83	0.0	7.46×10^{19}
Se, Cu_3Se_2 , Bi_2O_3 , $Al_4Bi_2O_9$	-6.746	-0.865	-0.62	-1.435	0.0	$7.5{\times}10^{19}$
$Cu_2O, Cu_3Se_2, AlCuO_2, Bi_2O_3$	-6.523	-0.603	-0.445	-1.61	-0.262	2.61×10^{19}
$Cu_3Se_2, AlCuO_2, Bi_2O_3, Al_4Bi_2O_9$	-6.602	-0.721	-0.524	-1.531	-0.145	$4.22{\times}10^{19}$
$Al_2O_3, Cu_3Se_2, AlCuO_2, Al_4Bi_2O_9$	-5.614	-0.029	-0.326	-2.124	-0.441	$1.17{\times}10^{19}$
$Cu_2Se, Cu_2O, Cu_3Se_2, AlCuO_2$	-6.142	-0.285	-0.318	-1.864	-0.453	$1.13{\times}10^{19}$
$Cu_2Se, Al_2O_3, Cu_3Se_2, AlCuO_2$	-5.59	-0.009	-0.318	-2.14	-0.453	$1.1{\times}10^{19}$
Bi, Cu_2Se , Al_2O_3 , Cu_3Se_2	-5.576	0.0	-0.318	-2.149	-0.453	$1.1{\times}10^{19}$
$\mathrm{Bi},\mathrm{Al}_2\mathrm{O}_3,\mathrm{Bi}_2\mathrm{Se}_3,\mathrm{Cu}_3\mathrm{Se}_2$	-5.476	0.0	-0.452	-2.216	-0.252	$2.34{\times}10^{19}$
Bi, Cu_2Se , Cu_2O , $AlCuO_2$	-5.857	0.0	-0.223	-2.054	-0.643	$5.11{\times}10^{18}$
Bi, Cu_2Se , Al_2O_3 , $AlCuO_2$	-5.581	0.0	-0.315	-2.146	-0.459	$1.08{\times}10^{19}$
Bi, Al ₂ O ₃ , AlCuO ₂ , Al ₄ Bi ₂ O ₉	-5.585	0.0	-0.316	-2.143	-0.46	$1.08{\times}10^{19}$
Bi, AlCuO ₂ , Bi ₂ O ₃ , Al ₄ Bi ₂ O ₉	-5.881	0.0	-0.283	-2.012	-0.625	$7.59{\times}10^{18}$
Bi, Cu ₂ O, AlCuO ₂ , Bi ₂ O ₃	-5.92	0.0	-0.244	-2.012	-0.664	$5.61{\times}10^{18}$
$\mathrm{Bi},\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{O}_3,\mathrm{Al}_4\mathrm{Bi}_2\mathrm{O}_9$	-5.881	0.0	-0.507	-2.012	-0.402	$3.45{\times}10^{19}$
$\mathrm{Bi},\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{Se}_3,\mathrm{Al}_4\mathrm{Bi}_2\mathrm{O}_9$	-5.712	0.0	-0.582	-2.087	-0.252	$5.39{\times}10^{19}$
$\mathrm{Bi},\mathrm{Al}_2\mathrm{O}_3,\mathrm{Bi}_2\mathrm{Se}_3,\mathrm{Al}_4\mathrm{Bi}_2\mathrm{O}_9$	-5.585	0.0	-0.525	-2.143	-0.252	$3.77{\times}10^{19}$

Phase Equilibriua of Al-Doped BiCuSeO

Table S10: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-Al phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm Ga}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$p - n \; ({\rm cm}^{-3})$
Se, Cu_3Se_2 , Ga_2O_3 , Bi_2Se_3	-0.378	-0.62	-2.811	-1.923	0.0	$7.36{ imes}10^{19}$
Se, Bi_2O_2Se , $Bi_2Ga_4O_9$, Bi_2O_3	-0.602	-0.708	-3.341	-1.61	0.0	$1.26{\times}10^{20}$
Se, $Bi_2Ga_4O_9$, Ga_2O_3 , Bi_2Se_3	-0.378	-0.701	-2.933	-1.842	0.0	$1.19{\times}10^{20}$
Se, Bi_2O_2Se , $Bi_2Ga_4O_9$, Bi_2Se_3	-0.378	-0.708	-2.948	-1.835	0.0	$1.24{\times}10^{20}$
Se, $Bi_2Ga_4O_9$, Cu_3Se_2 , Ga_2O_3	-0.62	-0.62	-3.175	-1.68	0.0	7.48×10^{19}
Se, $Bi_2Ga_4O_9$, Cu_3Se_2 , Bi_2O_3	-0.865	-0.62	-3.604	-1.435	0.0	$7.5{\times}10^{19}$
Bi, Cu_2O , $CuGaO_2$, Bi_2O_3	0.0	-0.244	-2.754	-2.012	-0.664	$5.61 { imes} 10^{18}$
$\mathrm{Bi},\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{Ga}_4\mathrm{O}_9,\mathrm{Bi}_2\mathrm{Se}_3$	0.0	-0.582	-2.57	-2.087	-0.252	$5.37{\times}10^{19}$
$\mathrm{Bi},\mathrm{Bi}_2\mathrm{Ga}_4\mathrm{O}_9,\mathrm{Ga}_2\mathrm{O}_3,\mathrm{Bi}_2\mathrm{Se}_3$	0.0	-0.575	-2.555	-2.093	-0.252	$5.14{\times}10^{19}$
$\mathrm{Bi},\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{Ga}_4\mathrm{O}_9,\mathrm{Bi}_2\mathrm{O}_3$	0.0	-0.507	-2.739	-2.012	-0.402	$3.45{ imes}10^{19}$
$\mathrm{Bi},\mathrm{CuGaO}_2,\mathrm{Bi}_2\mathrm{Ga}_4\mathrm{O}_9,\mathrm{Ga}_2\mathrm{O}_3$	0.0	-0.28	-2.555	-2.093	-0.546	$8.27{\times}10^{18}$
$\mathrm{Bi},\mathrm{CuGaO}_2,\mathrm{Bi}_2\mathrm{Ga}_4\mathrm{O}_9,\mathrm{Bi}_2\mathrm{O}_3$	0.0	-0.26	-2.739	-2.012	-0.648	$6.37{\times}10^{18}$
Bi, Cu_2Se , $CuGaO_2$, Ga_2O_3	0.0	-0.274	-2.537	-2.105	-0.54	8×10^{18}
Bi, Cu_2Se , Cu_2O , $CuGaO_2$	0.0	-0.223	-2.691	-2.054	-0.643	$5.11{\times}10^{18}$
$\mathrm{Bi},\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Ga}_2\mathrm{O}_3,\mathrm{Bi}_2\mathrm{Se}_3$	0.0	-0.452	-2.371	-2.216	-0.252	$2.33{\times}10^{19}$
$\mathrm{Bi},\mathrm{Cu}_2\mathrm{Se},\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Ga}_2\mathrm{O}_3$	0.0	-0.318	-2.471	-2.149	-0.453	$1.1{\times}10^{19}$
$CuGaO_2,Bi_2Ga_4O_9,Cu_3Se_2,Ga_2O_3$	-0.221	-0.354	-2.776	-1.946	-0.399	$1.44{\times}10^{19}$
$CuGaO_2,Bi_2Ga_4O_9,Cu_3Se_2,Bi_2O_3$	-0.65	-0.477	-3.389	-1.578	-0.215	$3.17{\times}10^{19}$
Cu_2O , $CuGaO_2$, Cu_3Se_2 , Bi_2O_3	-0.603	-0.445	-3.357	-1.61	-0.262	2.61×10^{19}
$Cu_2Se, Cu_2O, CuGaO_2, Cu_3Se_2$	-0.285	-0.318	-2.976	-1.864	-0.453	$1.13{\times}10^{19}$
$Cu_2Se, CuGaO_2, Cu_3Se_2, Ga_2O_3$	-0.131	-0.318	-2.668	-2.018	-0.453	$1.13{\times}10^{19}$

Phase Equilibriua of Ga-Doped BiCuSeO

Table S11: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-Ga phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm In}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$p - n \; ({\rm cm}^{-3})$
Se, In_2O_3 , Cu_3Se_2 , $CuInSe_2$	-0.379	-0.62	-1.896	-1.921	0.0	7.34×10^{19}
Se, Cu_3Se_2 , $CuInSe_2$, Bi_2Se_3	-0.378	-0.62	-1.896	-1.923	0.0	7.34×10^{19}
Se, In_2O_3 , Bi_2O_2Se , Bi_2O_3	-0.602	-0.708	-2.362	-1.61	0.0	$1.26{ imes}10^{20}$
Se, In_2O_3 , CuInSe ₂ , Bi_2Se_3	-0.378	-0.621	-1.895	-1.922	0.0	$7.39{\times}10^{19}$
Se, In_2O_3 , Bi_2O_2Se , Bi_2Se_3	-0.378	-0.708	-2.025	-1.835	0.0	1.24×10^{20}
Se, In_2O_3 , Cu_3Se_2 , Bi_2O_3	-0.865	-0.62	-2.625	-1.435	0.0	7.48×10^{19}
$\mathrm{Bi},\mathrm{In_2O_3},\mathrm{Bi_2O_2Se},\mathrm{Bi_2Se_3}$	0.0	-0.582	-1.648	-2.087	-0.252	5.36×10^{19}
$\mathrm{Bi},\mathrm{In_2O_3},\mathrm{CuInSe_2},\mathrm{Bi_2Se_3}$	0.0	-0.495	-1.518	-2.173	-0.252	3.08×10^{19}
$\mathrm{Bi},\mathrm{In_2O_3},\mathrm{Bi_2O_2Se},\mathrm{Bi_2O_3}$	0.0	-0.507	-1.76	-2.012	-0.402	3.45×10^{19}
Bi, Cu_2Se , In_2O_3 , $CuInO_2$	0.0	-0.223	-1.696	-2.054	-0.642	$5.13{\times}10^{18}$
Bi, Cu_2Se , Cu_2O , $CuInO_2$	0.0	-0.223	-1.697	-2.054	-0.643	$5.11 { imes} 10^{18}$
Bi, Cu_2O , $CuInO_2$, Bi_2O_3	0.0	-0.244	-1.76	-2.012	-0.664	5.61×10^{18}
Bi, In_2O_3 , $CuInO_2$, Bi_2O_3	0.0	-0.245	-1.76	-2.012	-0.664	5.65×10^{18}
$\mathrm{Bi},\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{CuInSe}_2,\mathrm{Bi}_2\mathrm{Se}_3$	0.0	-0.452	-1.56	-2.216	-0.252	$2.33{ imes}10^{19}$
$Bi, In_2O_3, Cu_3Se_2, CuInSe_2$	0.0	-0.413	-1.482	-2.197	-0.31	1.91×10^{19}
Bi, Cu_2Se , In_2O_3 , Cu_3Se_2	0.0	-0.318	-1.554	-2.149	-0.453	$1.1{\times}10^{19}$
$\mathrm{In}_2\mathrm{O}_3,\mathrm{CuInO}_2,\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Bi}_2\mathrm{O}_3$	-0.604	-0.446	-2.364	-1.609	-0.261	$2.62{ imes}10^{19}$
$\mathrm{Cu}_2\mathrm{O},\mathrm{CuInO}_2,\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Bi}_2\mathrm{O}_3$	-0.603	-0.445	-2.363	-1.61	-0.262	$2.6{\times}10^{19}$
Cu_2Se , In_2O_3 , $CuInO_2$, Cu_3Se_2	-0.284	-0.318	-1.98	-1.865	-0.453	1.13×10^{19}
$Cu_2Se, Cu_2O, CuInO_2, Cu_3Se_2$	-0.285	-0.318	-1.982	-1.864	-0.453	1.13×10^{19}

Phase Equilibriua of In-Doped BiCuSeO

Table S12: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-In phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$\Delta \mu_{\rm Tl}$	$p-n~(\mathrm{cm}^{-3})$
$Bi, Bi_2O_2Se, BiSe_2Tl, Bi_2Se_3$	0.0	-0.582	-2.087	-0.252	-0.659	$5.39{\times}10^{19}$
$\mathrm{Bi},\mathrm{Bi}\mathrm{Se_2Tl},\mathrm{Bi_2O_3},\mathrm{Se_{12}Tl_{20}}$	0.0	-0.41	-2.012	-0.498	-0.166	$1.85{\times}10^{19}$
$\mathrm{Bi},\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}\mathrm{Se}_2\mathrm{Tl},\mathrm{Bi}_2\mathrm{O}_3$	0.0	-0.507	-2.012	-0.402	-0.359	$3.45{\times}10^{19}$
$\mathrm{Bi},\mathrm{Bi}\mathrm{Se_2}\mathrm{Tl},\mathrm{Cu_3}\mathrm{Se_2},\mathrm{Bi_2}\mathrm{Se_3}$	0.0	-0.452	-2.216	-0.252	-0.659	$2.34{\times}10^{19}$
$Bi, BiSe_2Tl, Se_{12}Tl_{20}, Cu_2Se_2Tl$	0.0	-0.399	-2.023	-0.498	-0.166	$1.74{\times}10^{19}$
$Bi, Bi_2O_3, Se_{12}Tl_{20}, Cu_2Se_2Tl$	0.0	-0.372	-2.012	-0.537	-0.142	$1.43{\times}10^{19}$
$\mathrm{Bi},\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_2\mathrm{O}_3,\mathrm{Cu}_2\mathrm{Se}_2\mathrm{Tl}$	0.0	-0.244	-2.012	-0.664	-0.142	$5.67{\times}10^{18}$
$Bi, Cu_2Se, Cu_2O, Cu_2Se_2Tl$	0.0	-0.223	-2.054	-0.643	-0.227	$5.15{\times}10^{18}$
$Bi, BiSe_2Tl, Cu_3Se_2, Cu_2Se_2Tl$	0.0	-0.399	-2.189	-0.332	-0.498	$1.78{\times}10^{19}$
$Bi, Cu_2Se, Cu_3Se_2, Cu_2Se_2Tl$	0.0	-0.318	-2.149	-0.453	-0.417	$1.1{\times}10^{19}$
$BiSe_2Tl, Bi_2O_3, Se_{12}Tl_{20}, Cu_2Se_2Tl$	-0.097	-0.447	-1.947	-0.429	-0.207	$2.44{\times}10^{19}$
$Cu_2Se, Cu_2O, Cu_3Se_2, Cu_2Se_2Tl$	-0.285	-0.318	-1.864	-0.453	-0.417	$1.14{\times}10^{19}$
$\mathrm{Cu}_2\mathrm{O},\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Bi}_2\mathrm{O}_3,\mathrm{Cu}_2\mathrm{Se}_2\mathrm{Tl}$	-0.603	-0.445	-1.61	-0.262	-0.544	$2.62{\times}10^{19}$
$Se,Cu_3Se_2,Bi_2O_3,Cu_2Se_2Tl$	-0.865	-0.62	-1.435	0.0	-0.719	$7.53{\times}10^{19}$
Se, $BiSe_2Tl$, Bi_2O_3 , Cu_2Se_2Tl	-0.612	-0.704	-1.604	0.0	-0.55	$1.23{\times}10^{20}$
Se, Bi_2O_2Se , $BiSe_2Tl$, Bi_2Se_3	-0.378	-0.708	-1.835	0.0	-0.784	$1.25{\times}10^{20}$
Se, Bi_2O_2Se , $BiSe_2Tl$, Bi_2O_3	-0.602	-0.708	-1.61	0.0	-0.56	$1.26{\times}10^{20}$
Se, $BiSe_2Tl$, Cu_3Se_2 , Bi_2Se_3	-0.378	-0.62	-1.923	0.0	-0.784	$7.36{\times}10^{19}$
Se, $BiSe_2Tl$, Cu_3Se_2 , Cu_2Se_2Tl	-0.443	-0.62	-1.857	0.0	-0.719	7.43×10^{19}

Phase Equilibriua of Tl-Doped BiCuSeO

Table S13: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-Tl phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$\Delta \mu_{\rm Si}$	$p-n~(\mathrm{cm}^{-3})$
$\mathrm{Bi},\mathrm{Bi}_4\mathrm{O}_{12}\mathrm{Si}_3,\mathrm{Bi}_2\mathrm{Se}_3,\mathrm{O}_2\mathrm{Si}$	0.0	-0.491	-2.177	-0.252	-5.116	3.02×10^{19}
$\mathrm{Bi},\mathrm{Bi}_4\mathrm{O}_{12}\mathrm{Si}_3,\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{Se}_3$	0.0	-0.582	-2.087	-0.252	-5.477	$5.39{\times}10^{19}$
$\mathrm{Bi},\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_4\mathrm{O}_{12}\mathrm{Si}_3,\mathrm{Bi}_2\mathrm{O}_3$	0.0	-0.244	-2.012	-0.664	-5.777	$5.61 { imes} 10^{18}$
$\mathrm{Bi},\mathrm{Bi}_4\mathrm{O}_{12}\mathrm{Si}_3,\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{O}_3$	0.0	-0.507	-2.012	-0.402	-5.777	$3.45{ imes}10^{19}$
Bi, Cu ₂ Se, Cu ₂ O, Bi ₄ O ₁₂ Si ₃	0.0	-0.223	-2.054	-0.643	-5.608	$5.11{\times}10^{18}$
$\mathrm{Bi},\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Bi}_2\mathrm{Se}_3,\mathrm{O}_2\mathrm{Si}$	0.0	-0.452	-2.216	-0.252	-5.038	$2.34{\times}10^{19}$
$\mathrm{Bi},\mathrm{Bi}_4\mathrm{O}_{12}\mathrm{Si}_3,\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{O}_2\mathrm{Si}$	0.0	-0.374	-2.177	-0.369	-5.116	$1.55{\times}10^{19}$
Bi, Cu ₂ Se, Bi ₄ O ₁₂ Si ₃ , Cu ₃ Se ₂	0.0	-0.318	-2.149	-0.453	-5.228	$1.1{\times}10^{19}$
$\operatorname{Bi}_4\operatorname{O}_{12}\operatorname{Si}_3,\operatorname{Cu}_3\operatorname{Se}_2,\operatorname{Bi}_2\operatorname{Se}_3,\operatorname{O}_2\operatorname{Si}$	-0.352	-0.609	-1.942	-0.017	-5.586	$6.87{\times}10^{19}$
$\mathrm{Cu}_2\mathrm{Se},\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_4\mathrm{O}_{12}\mathrm{Si}_3,\mathrm{Cu}_3\mathrm{Se}_2$	-0.285	-0.318	-1.864	-0.453	-5.988	$1.13{\times}10^{19}$
$\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_4\mathrm{O}_{12}\mathrm{Si}_3,\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Bi}_2\mathrm{O}_3$	-0.603	-0.445	-1.61	-0.262	-6.581	2.61×10^{19}
Se, $Bi_4O_{12}Si_3$, Cu_3Se_2 , Bi_2O_3	-0.865	-0.62	-1.435	0.0	-6.931	$7.5{\times}10^{19}$
Se, $Bi_4O_{12}Si_3$, Cu_3Se_2 , Bi_2Se_3	-0.378	-0.62	-1.923	0.0	-5.63	$7.36{ imes}10^{19}$
Se, $Bi_4O_{12}Si_3$, Bi_2O_2Se , Bi_2Se_3	-0.378	-0.708	-1.835	0.0	-5.981	$1.25{\times}10^{20}$
Se, $Bi_4O_{12}Si_3$, Bi_2O_2Se , Bi_2O_3	-0.603	-0.708	-1.61	0.0	-6.581	$1.26{\times}10^{20}$

Phase Equilibriua of Si-Doped BiCuSeO

Table S14: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-Si phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm Ge}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$p - n \; ({\rm cm}^{-3})$
Se, $Bi_4Ge_3O_{12}$, Cu_3Se_2 , Bi_2Se_3	-0.378	-0.62	-2.165	-1.923	0.0	7.36×10^{19}
Se, $\operatorname{Bi}_{12}\operatorname{GeO}_{20}$, $\operatorname{Bi}_2\operatorname{O}_2\operatorname{Se}$, $\operatorname{Bi}_4\operatorname{Ge}_3\operatorname{O}_{12}$	-0.582	-0.708	-3.061	-1.63	0.0	$1.26{ imes}10^{20}$
Se, $Bi_{12}GeO_{20}$, Bi_2O_2Se , Bi_2O_3	-0.603	-0.708	-3.224	-1.61	0.0	$1.26{ imes}10^{20}$
Se, Bi_2O_2Se , $Bi_4Ge_3O_{12}$, Bi_2Se_3	-0.378	-0.708	-2.515	-1.835	0.0	$1.25{\times}10^{20}$
Se, $\operatorname{Bi}_{12}\operatorname{GeO}_{20}$, $\operatorname{Cu}_3\operatorname{Se}_2$, $\operatorname{Bi}_2\operatorname{O}_3$	-0.865	-0.62	-3.574	-1.435	0.0	$7.5{\times}10^{19}$
Se, $\operatorname{Bi}_{12}\operatorname{GeO}_{20}$, $\operatorname{Bi}_4\operatorname{Ge}_3\operatorname{O}_{12}$, $\operatorname{Cu}_3\operatorname{Se}_2$	-0.845	-0.62	-3.411	-1.455	0.0	7.48×10^{19}
$\mathrm{Bi},\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_4\mathrm{Ge}_3\mathrm{O}_{12},\mathrm{Bi}_2\mathrm{Se}_3$	0.0	-0.582	-2.012	-2.087	-0.252	$5.39{\times}10^{19}$
$\mathrm{Bi},\mathrm{Bi}_{12}\mathrm{GeO}_{20},\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{O}_3$	0.0	-0.507	-2.421	-2.012	-0.402	$3.45{ imes}10^{19}$
$\mathrm{Bi},\mathrm{Bi}_{12}\mathrm{GeO}_{20},\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_4\mathrm{Ge}_3\mathrm{O}_{12}$	0.0	-0.514	-2.284	-2.018	-0.388	$3.62{\times}10^{19}$
$\mathrm{Bi}, \mathrm{Bi}_4\mathrm{Ge}_3\mathrm{O}_{12}, \mathrm{Cu}_3\mathrm{Se}_2, \mathrm{Bi}_2\mathrm{Se}_3$	0.0	-0.452	-1.494	-2.216	-0.252	$2.34{\times}10^{19}$
Bi, Cu ₂ Se, Bi ₄ Ge ₃ O ₁₂ , Cu ₃ Se ₂	0.0	-0.318	-1.762	-2.149	-0.453	$1.1{\times}10^{19}$
Bi, Cu ₂ Se, Cu ₂ O, Bi ₄ Ge ₃ O ₁₂	0.0	-0.223	-2.142	-2.054	-0.643	$5.11{\times}10^{18}$
$\mathrm{Bi},\mathrm{Bi}_{12}\mathrm{GeO}_{20},\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_2\mathrm{O}_3$	0.0	-0.244	-2.421	-2.012	-0.664	5.61×10^{18}
$\mathrm{Bi},\mathrm{Bi}_{12}\mathrm{GeO}_{20},\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_4\mathrm{Ge}_3\mathrm{O}_{12}$	0.0	-0.241	-2.284	-2.018	-0.661	$5.54{\times}10^{18}$
$Cu_2Se, Cu_2O, Bi_4Ge_3O_{12}, Cu_3Se_2$	-0.285	-0.318	-2.522	-1.864	-0.453	$1.13{ imes}10^{19}$
$\mathrm{Bi}_{12}\mathrm{GeO}_{20},\mathrm{Cu}_2\mathrm{O},\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Bi}_2\mathrm{O}_3$	-0.603	-0.445	-3.224	-1.61	-0.262	2.61×10^{19}
${\rm Bi}_{12}{\rm GeO}_{20},{\rm Cu}_2{\rm O},{\rm Bi}_4{\rm Ge}_3{\rm O}_{12},{\rm Cu}_3{\rm Se}_2$	-0.552	-0.425	-3.02	-1.651	-0.293	$2.3{\times}10^{19}$

Phase Equilibriua of Ge-Doped BiCuSeO

Table S15: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-Ge phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$\Delta \mu_{\rm Sn}$	$p-n~(\mathrm{cm}^{-3})$
Se, O_2Sn , Cu_3Se_2 , Bi_2Se_3	-0.378	-0.62	-1.923	0.0	-1.897	7.36×10^{19}
Se, $\operatorname{Bi}_2\operatorname{O}_2\operatorname{Se}$, $\operatorname{Bi}_2\operatorname{O}_7\operatorname{Sn}_2$, $\operatorname{Bi}_2\operatorname{O}_3$	-0.603	-0.708	-1.61	0.0	-2.676	$1.26{\times}10^{20}$
Se, $\operatorname{Bi}_2\operatorname{O}_2\operatorname{Se}$, $\operatorname{Bi}_2\operatorname{O}_7\operatorname{Sn}_2$, $\operatorname{Bi}_2\operatorname{Se}_3$	-0.378	-0.708	-1.835	0.0	-2.113	$1.25{\times}10^{20}$
Se, O_2Sn , $Bi_2O_7Sn_2$, Bi_2Se_3	-0.378	-0.68	-1.863	0.0	-2.017	$1.06{ imes}10^{20}$
Se, O_2Sn , $Bi_2O_7Sn_2$, Cu_3Se_2	-0.557	-0.62	-1.743	0.0	-2.256	7.48×10^{19}
Se, $Bi_2O_7Sn_2$, Cu_3Se_2 , Bi_2O_3	-0.865	-0.62	-1.435	0.0	-3.026	$7.5{\times}10^{19}$
$\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_2\mathrm{O}_7\mathrm{Sn}_2,\mathrm{Cu}_2\mathrm{Se},\mathrm{Cu}_3\mathrm{Se}_2$	-0.285	-0.318	-1.864	-0.453	-2.104	$1.13{\times}10^{19}$
O_2Sn , $Bi_2O_7Sn_2$, Cu_2Se , Cu_3Se_2	-0.104	-0.318	-2.045	-0.453	-1.652	$1.13{\times}10^{19}$
$\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_2\mathrm{O}_7\mathrm{Sn}_2,\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Bi}_2\mathrm{O}_3$	-0.603	-0.445	-1.61	-0.262	-2.676	2.61×10^{19}
Bi, Cu ₂ O, Bi ₂ O ₇ Sn ₂ , Bi ₂ O ₃	0.0	-0.244	-2.012	-0.664	-1.873	$5.61 { imes} 10^{18}$
Bi, O_2Sn , $Bi_2O_7Sn_2$, Cu_2Se	0.0	-0.283	-2.114	-0.522	-1.513	8.61×10^{18}
Bi, Cu ₂ O, Bi ₂ O ₇ Sn ₂ , Cu ₂ Se	0.0	-0.223	-2.054	-0.643	-1.724	$5.11{\times}10^{18}$
Bi, O_2Sn , Cu_2Se , Cu_3Se_2	0.0	-0.318	-2.149	-0.453	-1.444	$1.11{\times}10^{19}$
$\mathrm{Bi},\mathrm{O_2Sn},\mathrm{Cu_3Se_2},\mathrm{Bi_2Se_3}$	0.0	-0.452	-2.216	-0.252	-1.31	$2.34{\times}10^{19}$
Bi, Bi_2O_2Se , $Bi_2O_7Sn_2$, Bi_2O_3	0.0	-0.507	-2.012	-0.402	-1.873	$3.45{\times}10^{19}$
$\mathrm{Bi},\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{O}_7\mathrm{Sn}_2,\mathrm{Bi}_2\mathrm{Se}_3$	0.0	-0.582	-2.087	-0.252	-1.61	$5.39{\times}10^{19}$
$\mathrm{Bi},\mathrm{O_2Sn},\mathrm{Bi_2O_7Sn_2},\mathrm{Bi_2Se_3}$	0.0	-0.554	-2.114	-0.252	-1.513	$4.52{\times}10^{19}$

Phase Equilibriua of Sn-Doped BiCuSeO

Table S16: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-Sn phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Pb}$	$\Delta \mu_{\rm Se}$	$p-n~(\mathrm{cm}^{-3})$
Se, PbSe, Cu_3Se_2 , Bi_2Se_3	-0.378	-0.62	-1.923	-0.942	0.0	$8.28{\times}10^{19}$
Se, PbSe, Bi_2O_2Se , Bi_2O_3	-0.602	-0.708	-1.61	-0.942	0.0	$1.92{\times}10^{20}$
Se, PbSe, Bi_2O_2Se , Bi_2Se_3	-0.378	-0.708	-1.835	-0.942	0.0	$1.3{ imes}10^{20}$
Se, PbSe, Cu_3Se_2 , O_5Pb_3Se	-0.772	-0.62	-1.528	-0.942	0.0	$4{\times}10^{20}$
Se, O_3PbSe , Cu_3Se_2 , O_5Pb_3Se	-0.773	-0.62	-1.527	-0.943	0.0	$4{\times}10^{20}$
Se, O_3PbSe , Cu_3Se_2 , Bi_2O_3	-0.865	-0.62	-1.435	-1.22	0.0	$1.54{\times}10^{20}$
Se, O_3PbSe , Bi_2O_3 , O_5Pb_3Se	-0.727	-0.666	-1.527	-0.943	0.0	$3.17{\times}10^{20}$
Se, PbSe, Bi_2O_3 , O_5Pb_3Se	-0.726	-0.667	-1.528	-0.942	0.0	$3.17{\times}10^{20}$
Bi, PbSe, Bi_2O_2Se , Bi_2Se_3	0.0	-0.582	-2.087	-0.69	-0.252	$5.62{\times}10^{19}$
Bi, Cu_2Se , Cu_2O_2Pb , OPb	0.0	-0.228	-2.059	-0.335	-0.632	$6.01 { imes} 10^{19}$
Bi, PbSe, Cu_2Se , OPb	0.0	-0.237	-2.068	-0.326	-0.616	$6.59{\times}10^{19}$
Bi, Cu_2Se , Cu_2O , Cu_2O_2Pb	0.0	-0.223	-2.054	-0.356	-0.643	$5.31{\times}10^{19}$
Bi , $\operatorname{Cu}_2\operatorname{O}_2\operatorname{Pb}$, $\operatorname{Bi}_2\operatorname{O}_3$, OPb	0.0	-0.252	-2.012	-0.382	-0.656	4.6×10^{19}
$\mathrm{Bi},\mathrm{Cu}_2\mathrm{O},\mathrm{Cu}_2\mathrm{O}_2\mathrm{Pb},\mathrm{Bi}_2\mathrm{O}_3$	0.0	-0.244	-2.012	-0.398	-0.664	$4.18{\times}10^{19}$
Bi, PbSe, Bi_2O_3 , OPb	0.0	-0.349	-2.012	-0.382	-0.56	$6.32{\times}10^{19}$
Bi, PbSe, Bi_2O_2Se , Bi_2O_3	0.0	-0.507	-2.012	-0.54	-0.402	$5.11{\times}10^{19}$
$\mathrm{Bi},\mathrm{PbSe},\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Bi}_2\mathrm{Se}_3$	0.0	-0.452	-2.216	-0.69	-0.252	$2.74{\times}10^{19}$
Bi, PbSe, Cu_2Se , Cu_3Se_2	0.0	-0.318	-2.149	-0.489	-0.453	$4.58{\times}10^{19}$
$Cu_2O, Cu_2O_2Pb, Cu_3Se_2, Bi_2O_3$	-0.603	-0.445	-1.61	-0.8	-0.262	$2.94{\times}10^{20}$
$Cu_2O_2Pb, Cu_3Se_2, Bi_2O_3, OPb$	-0.627	-0.461	-1.594	-0.8	-0.238	$3.42{\times}10^{20}$
PbSe, Cu_3Se_2 , O_5Pb_3Se , OPb	-0.679	-0.536	-1.579	-0.815	-0.127	$4.58{\times}10^{20}$
Cu_3Se_2 , Bi_2O_3 , O_5Pb_3Se , OPb	-0.688	-0.502	-1.553	-0.841	-0.178	4.03×10^{20}
$O_3PbSe, Cu_3Se_2, Bi_2O_3, O_5Pb_3Se$	-0.786	-0.567	-1.488	-0.983	-0.079	$3.36{\times}10^{20}$
PbSe, Bi_2O_3 , O_5Pb_3Se , OPb	-0.649	-0.565	-1.579	-0.815	-0.127	$3.91{\times}10^{20}$
PbSe, Cu_2Se , Cu_3Se_2 , OPb	-0.244	-0.318	-1.905	-0.489	-0.453	$1.56{\times}10^{20}$
$Cu_2Se, Cu_2O_2Pb, Cu_3Se_2, OPb$	-0.269	-0.318	-1.88	-0.514	-0.453	$1.56{ imes}10^{20}$
$Cu_2Se, Cu_2O, Cu_2O_2Pb, Cu_3Se_2$	-0.285	-0.318	-1.864	-0.546	-0.453	$1.46{\times}10^{20}$

Phase Equilibriua of Pb-Doped BiCuSeO

Table S17: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-Pb phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Sc}$	$\Delta \mu_{\rm Se}$	$p-n~(\mathrm{cm}^{-3})$
Se, O_3Sc_2 , Cu_3Se_2 , Bi_2Se_3	-0.378	-0.62	-1.923	-6.969	0.0	7.36×10^{19}
Se, O_3Sc_2 , Bi_2O_2Se , Bi_2O_3	-0.602	-0.708	-1.61	-7.437	0.0	$1.26{\times}10^{20}$
Se, O_3Sc_2 , Bi_2O_2Se , Bi_2Se_3	-0.378	-0.708	-1.835	-7.1	0.0	$1.25{\times}10^{20}$
Se, O_3Sc_2 , Cu_3Se_2 , Bi_2O_3	-0.865	-0.62	-1.435	-7.7	0.0	$7.5{\times}10^{19}$
$\mathrm{Bi},\mathrm{O_3Sc_2},\mathrm{Bi_2O_2Se},\mathrm{Bi_2Se_3}$	0.0	-0.582	-2.087	-6.723	-0.252	5.39×10^{19}
Bi, Cu_2Se , Cu_2O , CuO_2Sc	0.0	-0.223	-2.054	-6.817	-0.643	$5.11{\times}10^{18}$
Bi, O_3Sc_2 , Cu_2Se , CuO_2Sc	0.0	-0.253	-2.084	-6.726	-0.582	$6.72{\times}10^{18}$
$\mathrm{Bi},\mathrm{O_3Sc_2},\mathrm{CuO_2Sc},\mathrm{Bi_2O_3}$	0.0	-0.29	-2.012	-6.835	-0.619	$7.98{ imes}10^{18}$
Bi, Cu_2O , CuO_2Sc , Bi_2O_3	0.0	-0.244	-2.012	-6.881	-0.664	5.61×10^{18}
$\mathrm{Bi},\mathrm{O}_3\mathrm{Sc}_2,\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{O}_3$	0.0	-0.507	-2.012	-6.835	-0.402	$3.45{ imes}10^{19}$
$\mathrm{Bi},\mathrm{O_3Sc_2},\mathrm{Cu_3Se_2},\mathrm{Bi_2Se_3}$	0.0	-0.452	-2.216	-6.528	-0.252	$2.34{\times}10^{19}$
$Bi, O_3Sc_2, Cu_2Se, Cu_3Se_2$	0.0	-0.318	-2.149	-6.629	-0.453	$1.1{\times}10^{19}$
O_3Sc_2 , Cu_2Se , CuO_2Sc , Cu_3Se_2	-0.194	-0.318	-1.955	-6.92	-0.453	1.13×10^{19}
$Cu_2Se, Cu_2O, CuO_2Sc, Cu_3Se_2$	-0.285	-0.318	-1.864	-7.102	-0.453	1.13×10^{19}
$O_3Sc_2, CuO_2Sc, Cu_3Se_2, Bi_2O_3$	-0.739	-0.536	-1.519	-7.574	-0.126	4.54×10^{19}
$\mathrm{Cu}_2\mathrm{O},\mathrm{Cu}\mathrm{O}_2\mathrm{Sc},\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Bi}_2\mathrm{O}_3$	-0.603	-0.445	-1.61	-7.483	-0.262	2.61×10^{19}

Phase Equilibriua of Sc-Doped BiCuSeO

Table S18: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-Sc phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$\Delta \mu_{\rm Y}$	$p-n~(\mathrm{cm}^{-3})$
$\mathrm{Bi}, \mathrm{Bi}_2\mathrm{O}_2\mathrm{Se}, \mathrm{Bi}_2\mathrm{Se}_3, \mathrm{O}_3\mathrm{Y}_2$	0.0	-0.582	-2.087	-0.252	-6.748	$5.31e{+}19$
$\mathrm{Bi},\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_2\mathrm{O}_3,\mathrm{O}_3\mathrm{Y}_2$	0.0	-0.244	-2.012	-0.664	-6.86	$5.59e{+}18$
Bi, Cu_2Se , Cu_2O , O_3Y_2	0.0	-0.223	-2.054	-0.643	-6.796	5.08e + 18
$\mathrm{Bi},\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{O}_3,\mathrm{O}_3\mathrm{Y}_2$	0.0	-0.507	-2.012	-0.402	-6.86	3.44e + 19
$\mathrm{Bi},\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Bi}_2\mathrm{Se}_3,\mathrm{O}_3\mathrm{Y}_2$	0.0	-0.452	-2.216	-0.252	-6.553	2.04e + 19
Bi, Cu_2Se , Cu_3Se_2 , O_3Y_2	0.0	-0.318	-2.149	-0.453	-6.654	1.05e + 19
$\mathrm{Cu}_2\mathrm{Se},\mathrm{Cu}_2\mathrm{O},\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{O}_3\mathrm{Y}_2$	-0.285	-0.318	-1.864	-0.453	-7.082	1.12e + 19
$\mathrm{Cu}_2\mathrm{O},\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Bi}_2\mathrm{O}_3,\mathrm{O}_3\mathrm{Y}_2$	-0.603	-0.445	-1.61	-0.262	-7.463	$2.59e{+}19$
Se, Cu_3Se_2 , Bi_2O_3 , O_3Y_2	-0.865	-0.62	-1.435	0.0	-7.725	7.46e + 19
Se, Bi_2O_2Se , Bi_2Se_3 , O_3Y_2	-0.378	-0.708	-1.835	0.0	-7.125	1.22e + 20
Se, Bi_2O_2Se , Bi_2O_3 , O_3Y_2	-0.602	-0.708	-1.61	0.0	-7.462	1.25e + 20
Se, Cu_3Se_2 , Bi_2Se_3 , O_3Y_2	-0.378	-0.62	-1.923	0.0	-6.994	6.67e + 19

Phase Equilibriua of Y-Doped BiCuSeO

Table S19: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-Y phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$\Delta \mu_{\rm Ti}$	$p-n~(\mathrm{cm}^{-3})$
$\mathrm{Bi},\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{O}_7\mathrm{Ti}_2,\mathrm{Bi}_2\mathrm{Se}_3$	0.0	-0.582	-2.087	-0.252	-5.733	5.39×10^{19}
$\mathrm{Bi},\mathrm{Bi}_2\mathrm{O}_7\mathrm{Ti}_2,\mathrm{O}_2\mathrm{Ti},\mathrm{Bi}_2\mathrm{Se}_3$	0.0	-0.567	-2.101	-0.252	-5.683	$4.91{\times}10^{19}$
$\mathrm{Bi},\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{O}_7\mathrm{Ti}_2,\mathrm{Bi}_2\mathrm{O}_3$	0.0	-0.507	-2.012	-0.402	-5.996	3.45×10^{19}
Bi, Cu_2Se , Cu_2O , $Bi_2O_7Ti_2$	0.0	-0.223	-2.054	-0.643	-5.847	$5.11{\times}10^{18}$
Bi, Cu_2Se , $Bi_2O_7Ti_2$, O_2Ti	0.0	-0.27	-2.101	-0.549	-5.683	$7.74{\times}10^{18}$
$\mathrm{Bi},\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_2\mathrm{O}_7\mathrm{Ti}_2,\mathrm{Bi}_2\mathrm{O}_3$	0.0	-0.244	-2.012	-0.664	-5.996	5.61×10^{18}
Bi, Cu_3Se_2 , O_2Ti , Bi_2Se_3	0.0	-0.452	-2.216	-0.252	-5.453	$2.34{\times}10^{19}$
Bi, Cu_2Se , Cu_3Se_2 , O_2Ti	0.0	-0.318	-2.149	-0.453	-5.587	$1.1{\times}10^{19}$
$\mathrm{Cu}_2\mathrm{Se},\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_2\mathrm{O}_7\mathrm{Ti}_2,\mathrm{Cu}_3\mathrm{Se}_2$	-0.285	-0.318	-1.864	-0.453	-6.227	$1.13{\times}10^{19}$
$\mathrm{Cu}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{O}_7\mathrm{Ti}_2,\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{O}_2\mathrm{Ti}$	-0.144	-0.318	-2.005	-0.453	-5.875	$1.13{\times}10^{19}$
$\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_2\mathrm{O}_7\mathrm{Ti}_2,\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Bi}_2\mathrm{O}_3$	-0.603	-0.445	-1.61	-0.262	-6.799	2.61×10^{19}
Se, $Bi_2O_7Ti_2$, Cu_3Se_2 , Bi_2O_3	-0.865	-0.62	-1.435	0.0	-7.149	$7.5{\times}10^{19}$
Se, $Bi_2O_7Ti_2$, Cu_3Se_2 , O_2Ti	-0.597	-0.62	-1.703	0.0	-6.479	7.48×10^{19}
Se, $\operatorname{Bi}_2\operatorname{O}_2\operatorname{Se}$, $\operatorname{Bi}_2\operatorname{O}_7\operatorname{Ti}_2$, $\operatorname{Bi}_2\operatorname{Se}_3$	-0.378	-0.708	-1.835	0.0	-6.237	$1.25{\times}10^{20}$
Se, $Bi_2O_7Ti_2$, O_2Ti , Bi_2Se_3	-0.378	-0.693	-1.849	0.0	-6.186	$1.14{\times}10^{20}$
Se, Bi_2O_2Se , $Bi_2O_7Ti_2$, Bi_2O_3	-0.602	-0.708	-1.61	0.0	-6.799	$1.26{ imes}10^{20}$
Se, Cu_3Se_2 , O_2Ti , Bi_2Se_3	-0.378	-0.62	-1.923	0.0	-6.04	$7.36{ imes}10^{19}$

Phase Equilibriua of Ti-Doped BiCuSeO

Table S20: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-Ti phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$\Delta \mu_{\rm Zr}$	$p-n~(\mathrm{cm}^{-3})$
Bi, Bi_2O_2Se , O_2Zr , Bi_2Se_3	0.0	-0.582	-2.087	-0.252	-7.229	$5.39{\times}10^{19}$
Bi, Cu_2Se , Cu_2O , O_2Zr	0.0	-0.223	-2.054	-0.643	-7.294	5.11×10^{18}
Bi, Cu ₂ O, O ₂ Zr, Bi ₂ O ₃	0.0	-0.244	-2.012	-0.664	-7.379	$5.61 { imes} 10^{18}$
$\mathrm{Bi},\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{O}_2\mathrm{Zr},\mathrm{Bi}_2\mathrm{O}_3$	0.0	-0.507	-2.012	-0.402	-7.379	$3.45{ imes}10^{19}$
$\mathrm{Bi},\mathrm{O_2Zr},\mathrm{Cu_3Se_2},\mathrm{Bi_2Se_3}$	0.0	-0.452	-2.216	-0.252	-6.97	$2.34{\times}10^{19}$
Bi, Cu_2Se , O_2Zr , Cu_3Se_2	0.0	-0.318	-2.149	-0.453	-7.104	$1.1{\times}10^{19}$
$Cu_2O, O_2Zr, Cu_3Se_2, Bi_2O_3$	-0.603	-0.445	-1.61	-0.262	-8.182	2.61×10^{19}
$Cu_2Se, Cu_2O, O_2Zr, Cu_3Se_2$	-0.285	-0.318	-1.864	-0.453	-7.674	$1.13{\times}10^{19}$
Se, O_2Zr , Cu_3Se_2 , Bi_2O_3	-0.865	-0.62	-1.435	0.0	-8.532	$7.5{\times}10^{19}$
Se, Bi_2O_2Se , O_2Zr , Bi_2Se_3	-0.378	-0.708	-1.835	0.0	-7.732	$1.25{\times}10^{20}$
Se, Bi_2O_2Se , O_2Zr , Bi_2O_3	-0.602	-0.708	-1.61	0.0	-8.182	$1.26{\times}10^{20}$
Se, O_2Zr , Cu_3Se_2 , Bi_2Se_3	-0.378	-0.62	-1.923	0.0	-7.557	$7.36{\times}10^{19}$

Phase Equilibriua of Zr-Doped BiCuSeO

Table S21: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-Zr phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm Hf}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$p-n~(\mathrm{cm}^{-3})$
Se, HfO_2 , Cu_3Se_2 , Bi_2Se_3	-0.378	-0.62	-8.0	-1.923	0.0	7.36×10^{19}
Se, $\operatorname{Bi}_2\operatorname{O}_2\operatorname{Se}$, HfO_2 , $\operatorname{Bi}_8\operatorname{Hf}_8\operatorname{O}_{28}$	-0.517	-0.708	-8.454	-1.695	0.0	$1.25{\times}10^{20}$
Se, $\operatorname{Bi}_2\operatorname{O}_2\operatorname{Se}$, $\operatorname{Bi}_2\operatorname{O}_3$, $\operatorname{Bi}_8\operatorname{Hf}_8\operatorname{O}_{28}$	-0.603	-0.708	-8.668	-1.61	0.0	$1.26{\times}10^{20}$
Se, Bi_2O_2Se , HfO_2 , Bi_2Se_3	-0.378	-0.708	-8.175	-1.835	0.0	$1.25{\times}10^{20}$
Se, HfO_2 , Cu_3Se_2 , $Bi_8Hf_8O_{28}$	-0.78	-0.62	-8.805	-1.52	0.0	7.48×10^{19}
Se, Cu_3Se_2 , Bi_2O_3 , $Bi_8Hf_8O_{28}$	-0.865	-0.62	-9.018	-1.435	0.0	7.48×10^{19}
Bi, Bi_2O_2Se , HfO_2 , Bi_2Se_3	0.0	-0.582	-7.672	-2.087	-0.252	$5.4{\times}10^{19}$
Bi, Cu_2Se , Cu_2O , HfO_2	0.0	-0.223	-7.737	-2.054	-0.643	$5.11{\times}10^{18}$
Bi, Cu ₂ O, HfO ₂ , Bi ₈ Hf ₈ O ₂₈	0.0	-0.23	-7.765	-2.04	-0.65	$5.29{\times}10^{18}$
Bi, Cu ₂ O, Bi ₂ O ₃ , Bi ₈ Hf ₈ O ₂₈	0.0	-0.244	-7.864	-2.012	-0.664	$5.61{\times}10^{18}$
Bi, Bi_2O_2Se , Bi_2O_3 , $Bi_8Hf_8O_{28}$	0.0	-0.507	-7.864	-2.012	-0.402	$3.44{\times}10^{19}$
Bi, Bi_2O_2Se , HfO_2 , $Bi_8Hf_8O_{28}$	0.0	-0.535	-7.765	-2.04	-0.345	$4.14{\times}10^{19}$
$\mathrm{Bi},\mathrm{HfO}_2,\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Bi}_2\mathrm{Se}_3$	0.0	-0.452	-7.413	-2.216	-0.252	$2.33{ imes}10^{19}$
Bi, Cu_2Se , HfO_2 , Cu_3Se_2	0.0	-0.318	-7.547	-2.149	-0.453	$1.1{\times}10^{19}$
$\mathrm{Cu}_2\mathrm{O},\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Bi}_2\mathrm{O}_3,\mathrm{Bi}_8\mathrm{Hf}_8\mathrm{O}_{28}$	-0.603	-0.445	-8.668	-1.61	-0.262	$2.6{\times}10^{19}$
$\mathrm{Cu}_2\mathrm{O},\mathrm{HfO}_2,\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Bi}_8\mathrm{Hf}_8\mathrm{O}_{28}$	-0.39	-0.36	-8.284	-1.78	-0.39	$1.51{\times}10^{19}$
$Cu_2Se, Cu_2O, HfO_2, Cu_3Se_2$	-0.285	-0.318	-8.117	-1.864	-0.453	$1.13{\times}10^{19}$

Phase Equilibriua of Hf-Doped BiCuSeO

Table S22: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-Hf phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm F}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$p - n \; ({\rm cm}^{-3})$
$Cu_2O, Cu_3Se_2, Bi_2O_3, BiFO$	-0.632	-0.465	-3.449	-1.601	-0.25	$2.62{ imes}10^{19}$
Cu_3Se_2 , $Bi_7F_{11}O_5$, Cu_2Se , $BiFO$	-0.263	-0.349	-3.507	-1.913	-0.423	$8.12{\times}10^{18}$
Cu_2O , Cu_3Se_2 , Cu_2Se , $BiFO$	-0.343	-0.349	-3.507	-1.832	-0.423	$9.53{\times}10^{18}$
$\mathrm{Bi},\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Bi}_7\mathrm{F}_{11}\mathrm{O}_5,\mathrm{Cu}_2\mathrm{Se}$	0.0	-0.349	-3.555	-2.176	-0.423	$2.99{\times}10^{18}$
$\mathrm{Bi},\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Bi}_7\mathrm{F}_{11}\mathrm{O}_5,\mathrm{Bi}_2\mathrm{Se}_3$	0.0	-0.46	-3.53	-2.231	-0.256	$3.82{\times}10^{18}$
$\mathrm{Bi},\mathrm{Bi}_{7}\mathrm{F}_{11}\mathrm{O}_{5},\mathrm{Bi}_{2}\mathrm{O}_{2}\mathrm{Se},\mathrm{BiFO}$	0.0	-0.583	-3.595	-2.088	-0.277	$2.61{\times}10^{19}$
Bi, Bi_2O_3 , Bi_2O_2Se , $BiFO$	0.0	-0.518	-3.66	-2.023	-0.408	$2.77{\times}10^{19}$
$\mathrm{Bi},\mathrm{Bi}_{7}\mathrm{F}_{11}\mathrm{O}_{5},\mathrm{Cu}_{2}\mathrm{Se},\mathrm{BiFO}$	0.0	-0.262	-3.595	-2.088	-0.598	$2.93{\times}10^{18}$
Bi, Cu_2O , Cu_2Se , BiFO	0.0	-0.235	-3.621	-2.061	-0.652	$2.61{\times}10^{18}$
Bi, Cu ₂ O, Bi ₂ O ₃ , BiFO	0.0	-0.254	-3.66	-2.023	-0.671	$3.59{\times}10^{18}$
$\mathrm{Bi},\mathrm{Bi}_{7}\mathrm{F}_{11}\mathrm{O}_{5},\mathrm{Bi}_{2}\mathrm{O}_{2}\mathrm{Se},\mathrm{Bi}_{2}\mathrm{Se}_{3}$	0.0	-0.593	-3.59	-2.098	-0.256	$2.59{\times}10^{19}$
Se, Cu_3Se_2 , $Bi_7F_{11}O_5$, $BiFO$	-0.686	-0.631	-3.366	-1.631	0.0	$7{\times}10^{19}$
Se, Cu_3Se_2 , Bi_2O_3 , $BiFO$	-0.882	-0.631	-3.366	-1.435	0.0	$7.77{\times}10^{19}$
Se, $\operatorname{Bi}_7F_{11}O_5$, Bi_2O_2Se , Bi_2Se_3	-0.385	-0.722	-3.462	-1.842	0.0	$9.44{\times}10^{19}$
Se, Bi_2O_3 , Bi_2O_2Se , $BiFO$	-0.611	-0.722	-3.456	-1.615	0.0	$1.31{\times}10^{20}$
Se, $Bi_7F_{11}O_5$, Bi_2O_2Se , $BiFO$	-0.415	-0.722	-3.456	-1.811	0.0	1.01×10^{20}
Se, Cu_3Se_2 , $Bi_7F_{11}O_5$, Bi_2Se_3	-0.385	-0.631	-3.421	-1.932	0.0	$3.23{\times}10^{19}$

Phase Equilibria of F-Doped BiCuSeO

Table S23: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-F phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cl}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$p-n~(\mathrm{cm}^{-3})$
Se, BiClO, Cu_3Se_2 , Bi_2Se_3	-0.378	-1.43	-0.62	-1.923	0.0	$3.32{\times}10^{19}$
Se, Bi_2O_2Se , Bi_2O_3 , $Bi_{48}Cl_{20}O_{62}$	-0.603	-1.627	-0.708	-1.61	0.0	$1.05{\times}10^{20}$
Se, BiClO, Bi_2O_2Se , $Bi_{48}Cl_{20}O_{62}$	-0.446	-1.518	-0.708	-1.767	0.0	$7.95{\times}10^{19}$
Se, BiClO, Bi_2O_2Se , Bi_2Se_3	-0.378	-1.518	-0.708	-1.835	0.0	$7.92{\times}10^{19}$
Se, BiClO, Cu ₃ Se ₂ , Bi ₄₈ Cl ₂₀ O ₆₂	-0.708	-1.43	-0.62	-1.592	0.0	$3.34{\times}10^{19}$
Se, Cu_3Se_2 , Bi_2O_3 , $Bi_{48}Cl_{20}O_{62}$	-0.865	-1.54	-0.62	-1.435	0.0	$5.15{\times}10^{19}$
Bi, BiClO, Bi_2O_2Se , Bi_2Se_3	0.0	-1.643	-0.582	-2.087	-0.252	$2.18{\times}10^{19}$
Bi, BiClO, Bi_2O_2Se , $Bi_{48}Cl_{20}O_{62}$	0.0	-1.666	-0.559	-2.064	-0.297	1.71×10^{19}
${\rm Bi},{\rm Bi}_2{\rm O}_2{\rm Se},{\rm Bi}_2{\rm O}_3,{\rm Bi}_{48}{\rm Cl}_{20}{\rm O}_{62}$	0.0	-1.828	-0.507	-2.012	-0.402	$1.66{\times}10^{19}$
Bi, Cu ₂ Se, Cu ₂ O, Bi ₄₈ Cl ₂₀ O ₆₂	0.0	-1.697	-0.223	-2.054	-0.643	$-2.32{ imes}10^{18}$
Bi, Cu ₂ Se, BiClO, $Bi_{48}Cl_{20}O_{62}$	0.0	-1.666	-0.233	-2.064	-0.623	$-2.35{ imes}10^{18}$
${\rm Bi,Cu_2O,Bi_2O_3,Bi_{48}Cl_{20}O_{62}}$	0.0	-1.828	-0.244	-2.012	-0.664	-4.58×10^{17}
Bi, BiClO, Cu_3Se_2 , Bi_2Se_3	0.0	-1.514	-0.452	-2.216	-0.252	$4.83{ imes}10^{18}$
Bi, Cu_2Se , BiClO, Cu_3Se_2	0.0	-1.581	-0.318	-2.149	-0.453	$9.94{\times}10^{14}$
$Cu_2O, Cu_3Se_2, Bi_2O_3, Bi_{48}Cl_{20}O_{62}$	-0.603	-1.627	-0.445	-1.61	-0.262	$8.51{\times}10^{18}$
$\mathrm{Cu}_2\mathrm{Se},\mathrm{Bi}\mathrm{Cl}\mathrm{O},\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Bi}_{48}\mathrm{Cl}_{20}\mathrm{O}_{62}$	-0.255	-1.581	-0.318	-1.894	-0.453	$3.5{\times}10^{16}$
$Cu_2Se, Cu_2O, Cu_3Se_2, Bi_{48}Cl_{20}O_{62}$	-0.285	-1.602	-0.318	-1.864	-0.453	$3.02{\times}10^{17}$

Phase Equilibria of Cl-Doped BiCuSeO

Table S24: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-Cl phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Br}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$p - n \; ({\rm cm}^{-3})$
$\operatorname{Bi}_4\operatorname{Br}_2\operatorname{O}_5$, $\operatorname{Cu}_2\operatorname{O}$, $\operatorname{Cu}_3\operatorname{Se}_2$, $\operatorname{Bi}_2\operatorname{O}_3$	-0.603	-1.082	-0.445	-1.61	-0.262	1.02×10^{19}
${\rm Bi}_4{\rm Br}_2{\rm O}_5,{\rm Cu}_3{\rm Se}_2,{\rm Bi}_2{\rm O}_3,{\rm Bi}_6{\rm Br}_2{\rm O}_{14}{\rm Se}_3$	-0.833	-1.006	-0.599	-1.456	-0.032	4.75×10^{19}
$Bi_4Br_2O_5$, Cu_2Se , Cu_3Se_2 , $BiBrO$	-0.152	-1.016	-0.318	-1.997	-0.453	$2.06 imes 10^{17}$
$Bi_4Br_2O_5$, Cu_2O , Cu_2Se , Cu_3Se_2	-0.285	-1.082	-0.318	-1.864	-0.453	$1.07{\times}10^{18}$
Bi, Cu_2Se , Cu_3Se_2 , BiBrO	0.0	-1.016	-0.318	-2.149	-0.453	$1.92{\times}10^{17}$
Bi, Cu_3Se_2 , BiBrO, Bi_2Se_3	0.0	-0.949	-0.452	-2.216	-0.252	5.31×10^{18}
$\mathrm{Bi},\mathrm{Bi}_4\mathrm{Br}_2\mathrm{O}_5,\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{O}_3$	0.0	-1.283	-0.507	-2.012	-0.402	$1.94{\times}10^{19}$
$\mathrm{Bi},\mathrm{Bi}_4\mathrm{Br}_2\mathrm{O}_5,\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{Se}_3$	0.0	-1.096	-0.582	-2.087	-0.252	$2.57{\times}10^{19}$
$\mathrm{Bi}, \mathrm{Bi}_4\mathrm{Br}_2\mathrm{O}_5, \mathrm{Bi}\mathrm{Br}\mathrm{O}, \mathrm{Bi}_2\mathrm{Se}_3$	0.0	-1.067	-0.57	-2.098	-0.252	2.08×10^{19}
$\mathrm{Bi},\mathrm{Bi}_4\mathrm{Br}_2\mathrm{O}_5,\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_2\mathrm{O}_3$	0.0	-1.283	-0.244	-2.012	-0.664	$-2.62{ imes}10^{16}$
$Bi, Bi_4 Br_2 O_5, Cu_2 O, Cu_2 Se$	0.0	-1.177	-0.223	-2.054	-0.643	$-1.37{ imes}10^{18}$
Bi, $Bi_4Br_2O_5$, Cu_2Se , $BiBrO$	0.0	-1.067	-0.267	-2.098	-0.554	$-1.07{ imes}10^{18}$
$\mathrm{Se},\mathrm{Bi}_4\mathrm{Br}_2\mathrm{O}_5,\mathrm{Bi}_2\mathrm{O}_3,\mathrm{Bi}_6\mathrm{Br}_2\mathrm{O}_{14}\mathrm{Se}_3$	-0.809	-1.014	-0.639	-1.472	0.0	6.63×10^{19}
Se, Cu_3Se_2 , Bi_2O_3 , $Bi_6Br_2O_{14}Se_3$	-0.865	-1.108	-0.62	-1.435	0.0	6.84×10^{19}
Se, $Bi_4Br_2O_5$, Cu_3Se_2 , $BiBrO$	-0.605	-0.865	-0.62	-1.695	0.0	$3.58{\times}10^{19}$
$\mathrm{Se},\mathrm{Bi}_4\mathrm{Br}_2\mathrm{O}_5,\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Bi}_6\mathrm{Br}_2\mathrm{O}_{14}\mathrm{Se}_3$	-0.833	-0.979	-0.62	-1.467	0.0	$5.45 imes 10^{19}$
Se, $Bi_4Br_2O_5$, $BiBrO$, Bi_2Se_3	-0.378	-0.941	-0.696	-1.847	0.0	7.51×10^{19}
Se, $Bi_4Br_2O_5$, Bi_2O_2Se , Bi_2Se_3	-0.378	-0.97	-0.708	-1.835	0.0	$8.8{\times}10^{19}$
Se, $Bi_4Br_2O_5$, Bi_2O_2Se , Bi_2O_3	-0.603	-1.083	-0.708	-1.61	0.0	1.11×10^{20}
Se, Cu_3Se_2 , BiBrO, Bi_2Se_3	-0.378	-0.865	-0.62	-1.923	0.0	$3.57{\times}10^{19}$

Phase Equilibria of Br-Doped BiCuSeO

Table S25: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-Br phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

Equilibrium Phases	$\Delta \mu_{\rm Bi}$	$\Delta \mu_{\rm Cu}$	$\Delta \mu_{\rm I}$	$\Delta \mu_{\rm O}$	$\Delta \mu_{\rm Se}$	$p-n~(\mathrm{cm}^{-3})$
Se, $Bi_4I_2O_5$, Bi_2O_2Se , Bi_2O_3	-0.602	-0.708	-0.547	-1.61	0.0	$1.24{\times}10^{20}$
Se, $Bi_4I_2O_5$, Bi_2O_2Se , Bi_2Se_3	-0.378	-0.708	-0.435	-1.835	0.0	$1.18{\times}10^{20}$
Se, BiIO, $Bi_4I_2O_5$, Bi_2Se_3	-0.378	-0.685	-0.379	-1.857	0.0	$9.84{ imes}10^{19}$
Se, BiIO, Cu_3Se_2 , Bi_2Se_3	-0.378	-0.62	-0.314	-1.923	0.0	$6.1{\times}10^{19}$
Se, BiIO, $Bi_4I_2O_5$, Cu_3Se_2	-0.573	-0.62	-0.314	-1.727	0.0	$6.16{\times}10^{19}$
Se, $Bi_4I_2O_5$, Cu_3Se_2 , Bi_2O_3	-0.865	-0.62	-0.46	-1.435	0.0	$7.2{\times}10^{19}$
Bi, BiIO, CuI, Bi_2Se_3	0.0	-0.455	-0.401	-2.213	-0.252	$1.33{\times}10^{19}$
Bi, BiIO, $Bi_4I_2O_5$, Bi_2Se_3	0.0	-0.559	-0.505	-2.109	-0.252	$3.57{\times}10^{19}$
$\mathrm{Bi},\mathrm{Bi}_4\mathrm{I}_2\mathrm{O}_5,\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{Se}_3$	0.0	-0.582	-0.561	-2.087	-0.252	$4.6{\times}10^{19}$
$\mathrm{Bi},\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_4\mathrm{I}_2\mathrm{O}_5,\mathrm{Bi}_2\mathrm{O}_3$	0.0	-0.244	-0.748	-2.012	-0.664	$2.41{\times}10^{18}$
$\mathrm{Bi},\mathrm{Bi}_4\mathrm{I}_2\mathrm{O}_5,\mathrm{Bi}_2\mathrm{O}_2\mathrm{Se},\mathrm{Bi}_2\mathrm{O}_3$	0.0	-0.507	-0.748	-2.012	-0.402	$3.1{\times}10^{19}$
Bi, BiIO, $Bi_4I_2O_5$, CuI	0.0	-0.351	-0.505	-2.109	-0.46	$4.14{\times}10^{18}$
Bi, Cu_2Se , Cu_2O , $Bi_4I_2O_5$	0.0	-0.223	-0.642	-2.054	-0.643	$9.13{\times}10^{17}$
Bi, Cu_2Se , $Bi_4I_2O_5$, CuI	0.0	-0.229	-0.627	-2.06	-0.63	$9.66{ imes}10^{17}$
Bi, Cu_3Se_2 , CuI , Bi_2Se_3	0.0	-0.452	-0.404	-2.216	-0.252	$1.32{\times}10^{19}$
Bi, Cu_2Se , Cu_3Se_2 , CuI	0.0	-0.318	-0.538	-2.149	-0.453	$4.2{\times}10^{18}$
$BiIO, Cu_3Se_2, CuI, Bi_2Se_3$	-0.027	-0.464	-0.392	-2.195	-0.234	$1.47{\times}10^{19}$
$BiIO,Bi_4I_2O_5,Cu_3Se_2,CuI$	-0.339	-0.464	-0.392	-1.883	-0.234	$1.5{\times}10^{19}$
$\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_4\mathrm{I}_2\mathrm{O}_5,\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{Bi}_2\mathrm{O}_3$	-0.603	-0.445	-0.547	-1.61	-0.262	$2.05{\times}10^{19}$
$\mathrm{Cu}_2\mathrm{Se},\mathrm{Cu}_2\mathrm{O},\mathrm{Bi}_4\mathrm{I}_2\mathrm{O}_5,\mathrm{Cu}_3\mathrm{Se}_2$	-0.285	-0.318	-0.547	-1.864	-0.453	4.45×10^{18}
$\mathrm{Cu}_2\mathrm{Se},\mathrm{Bi}_4\mathrm{I}_2\mathrm{O}_5,\mathrm{Cu}_3\mathrm{Se}_2,\mathrm{CuI}$	-0.266	-0.318	-0.538	-1.883	-0.453	$4.22{\times}10^{18}$

Phase Equilibria of I-Doped BiCuSeO

Table S26: Chemical potentials $\Delta \mu_i$ (in eV) in all phase regions of the quinary Bi-Cu-Se-O-I phase space that are in equilibrium with BiCuSeO. The corresponding charge carrier concentration in each phase region, as determined by charge neutrality at the typical synthesis temperature of 973 K, is listed.

References

- Hiramatsu, H.; Yanagi, H.; Kamiya, T.; Ueda, K.; Hirano, M.; Hosono, H. Crystal structures, optoelectronic properties, and electronic structures of layered oxychalcogenides MCuOCh (M= Bi, La; Ch= S, Se, Te): effects of electronic configurations of M³⁺ ions. *Chem. Mater.* 2008, 20, 326.
- Lany, S. Semiconductor thermochemistry in density functional calculations. *Phys. Rev. B* 2008, 78, 245207.
- (3) Stevanović, V.; Lany, S.; Zhang, X.; Zunger, A. Correcting density functional theory for accurate predictions of compound enthalpies of formation: Fitted elemental-phase reference energies. *Phys. Rev. B* 2012, 85, 115104.