Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Haegyeom Kim

Manuscript Ver. 2.0

05/18/2021

Computational and experimental materials search of potential polyanionic K-ion cathodes

Supplementary Information

Jingyang Wang^{a,b+}, Bin Ouyang^{a,b+}, Hyunchul Kim^a, Tian Yaosen^b, Gerbrand Ceder^{a,b*} and Haegyeom Kim^{a*}

a. Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA

b. Department of Materials Science and Engineering, University of California, Berkeley, CA
94720, USA

+equal contribution

*Corresponding author:

Dr. Haegyeom Kim (Email: haegyumkim@lbl.gov)

Prof. Gerbrand Ceder (Email: gceder@berkeley.edu)

Figure S1. Calculated voltage profiles of the 10 compounds listed in Table 1.

Figure S2. Electrochemical voltage profiles of $K_6V_2(PO_4)_4$ at different cut-off voltages.

Figure S3. Calculated voltage profiles of $K_x V_{3-y} Cr_y (PO_4)_4$ (x = 0, 1, 2, 3) system.

Figure S4. Refinement results of a. K₃V₃(PO₄)₄, b. K₃V₂Cr(PO₄)₄, c. K₃VCr₂(PO₄)₄, and d. K₃Cr₃(PO₄)₄.

Figure S5. SEM images of a. $K_3V_3(PO_4)_4$, b. $K_3V_2Cr(PO_4)_4$, c. $K_3VCr_2(PO_4)_4$, and d. $K_3Cr_3(PO_4)_4$.

Figure S6. The energy change associated with K^+ diffusion in the $K_xMnP_2O_7$ structure calculated through Nudged Elastic Band (NEB) method.