# Charged droplets-driven fast formation of nickel-iron (oxy)hydroxide with rich oxygen defects for boosting overall water splitting

Jianing Dong, Yanjie Wang, Qiaorong Jiang, Zi-Ang Nan, Feng Ru Fan\*, Zhong-Qun Tian

<sup>a</sup> State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (*i*ChEM), Tan Kah Kee Innovation Laboratory, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

\* Corresponding author. E-mail: Feng Ru Fan: frfan@xmu.edu.cn

# **Table of Contents**

| Experimental Procedures       | 3   |
|-------------------------------|-----|
| Computational Method          | 5   |
| Supporting Figures and Tables | 6   |
| Figure S1                     | 6   |
| Figure S2                     | 7   |
| Figure S3                     | 8   |
| Figure S4                     | 8   |
| Figure S5                     | 9   |
| Figure S6                     | 9   |
| Figure S7                     | 9   |
| Figure S8                     | 10  |
| Figure S9                     | 11  |
| Figure S10                    | 12  |
| Figure S11                    | 13  |
| Table S1                      | 13  |
| Table S2                      | 14  |
| Table S3                      | 15  |
| Table S4                      | 16  |
| Table S5                      | 17  |
| References                    | 177 |

# **Experimental Procedures**

Synthesis of *E-NiFeOOH by electrospray ionization*: Firstly, nickel foam is cleaned by ultrasonic in acetone, hydrochloric acid (3 M) and DI water for 10 min to remove nickel oxide layer and containments, respectively and dried under ambient condition. Then, 0.1 M FeCl<sub>3</sub>·6H<sub>2</sub>O was dissolved in DI water as a precursor. Then this solution was injected into a fused silica capillary (50  $\mu$ m inner diameter and 150  $\mu$ m outer diameter) by a 500  $\mu$ L syringe (Hamilton) and a syringe pump (Harvard Apparatus) at a rate of 10  $\mu$ L/min for 20, 30, 40, 60 min (named as E-NiFeOOH-x min, x represents the electrospray time). The 8.5 ± 0.5 kV is applied between the needle and the glass on the lifts as a receiver which 1 x 1 cm<sup>2</sup> nickel foam placed on with a distance of 4 ± 0.3 cm to form a multi-jet mode to ensure the uniform distribution of charged droplets. During this spraying process, the charged microdroplets diminish in size by a series of solvent evaporation and coulomb fission. The smaller the droplet, the faster the reaction will be accelerated. Thousands of small droplets promote the entire reaction at the confined and charged solid-liquid interface. The electrodes were also rinsed with DI water after the reaction.

*Synthesis of I-NiFeOOH by corrosion engineering*: The fabrication of NiFeOOH by corrosion engineering only needs to immerse  $1 \times 1 \text{ cm}^2$  Ni foam into 1.5 mL (0.1 M) FeCl<sub>3</sub>·6H<sub>2</sub>O (named as I-NiFeOOH) for the same time compared with E-NiFeOOH. It is worth noting that the E-NiFeOOH and I-NiFeOOH were washed several times with DI water to end the spontaneous redox reaction on the surface.

Synthesis of Pt/C/NF and RuO<sub>2</sub>/NF: Pt/C and RuO<sub>2</sub> catalysts are loaded on the Ni foams to fabricate Pt/C/NF and RuO<sub>2</sub>/NF. Briefly, a homogenous ink was obtained by dispersing the commercial 7 mg Pt/C or RuO<sub>2</sub> catalysts in the mixture of 200  $\mu$ L water and 5  $\mu$ L Nafion by ultrasonic treatment. And then, all the ink was dropped on the Ni

foam to ensure that the loading mass of Pt/C and RuO<sub>2</sub> were both 2.5 mg/cm<sup>2</sup>.

*Material Characterization*: The morphology of NiFeOOH samples was observed using field emission scanning electron microscopy (FE-SEM, Hitachi S-4800, Zeiss-Gmini500) and transmission electron microscopy (TEM, FEI Tecnai F-20 operated at 200 kV). In addition, the high-resolution transmission electron microscope (HRTEM) equipped with energy dispersive X-ray (EDX) spectroscopic analysis (TEM, FEI Tecnai F-20 operated at 200 kV) was employed to give more detailed morphologies. The valence state, surface chemical state, and compositions were explored by X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific K-Alpha). XRD patterns were analyzed on an X-ray diffractometer (Rigaku, RINT2500) with a Cu Kα radiation source. EPR measurement was done by Bruker EMX-10/12 under 100 K conditions.

*Electrocatalytic Performance Characterization*: The overall water splitting measurements were performed through an electrochemical work station (CHI 660E, Shanghai Chenhua) with a typical three-electrode system: different NiFeOOH samples as work electrodes, graphite rod as a counter electrode and mercury oxide (Hg/HgO) as a reference electrode, 1 M KOH solution as alkaline electrolyte. The HER and OER polarization curves were measured at a scan rate of 5 mV/s. All potentials reported were calibrated to the reversible hydrogen electrode (RHE) by  $E_{RHE} = E_{SCE} + 0.098 \text{ V} + 0.059$  $\times$  pH, and all LSV curves were corrected for an ohmic drop (85%) to evaluate the true activity of the electrocatalysts. The electrochemical impedance spectroscopy was obtained in a 1 M KOH solution at 0.1 V from  $10^5 - 10^{-1}$  Hz with an AC voltage amplitude of 5 mV to measure the system resistance. The electrochemical surface area (ECSA) of different samples were gauged by the C<sub>dl</sub>, and CV with a different scan rate (20 mV/s, 20 mV/s, 40 mV/s, 80 mV/s, 160 mV/s) was employed to calculate the values of  $C_{dl}$ . The ECSA-normalized LSV curves are calculated by ECSA =  $C_{dl}/C_s$ . A specific capacitance (Cs) value  $Cs = 0.040 \text{ mF/cm}^2$ . Moreover, all the presented curves were in their steady-state after several cycles.

#### **Computational Method**

Spin-polarized density functional theory (DFT) calculations were conducted by Vienna Ab-initio Simulation Package (VASP)<sup>[1,2]</sup>, using the projected augmented wave (PAW)<sup>[3]</sup> method. The Perdew-Burke-Ernzerhof (PBE) functional was used to treat the exchange-correlation interaction<sup>[4]</sup>. The Grimme's D3-type of the semiempirical approach was applied to account for the dispersion interaction<sup>[5]</sup>. The Hubbard-U correction method (DFT + U) was adopted for accurately describing Ni/Fe 3d orbitals with U set to 4.0/6.4 eV. The cut-off energy was set to be 450 eV and the convergence threshold was set to  $10^{-4}$  and 0.02 eV/Å for energy and force, respectively. The NiFe-LDH was modelled by a  $3 \times 3$  slab and a ~15 Å vacuum layer was applied to prevent the interaction between periodical images. For the NiFe-LDH surface model, 1/4 Ni sites on surface were replaced with Fe atoms.

In the alkaline conditions, the OER involves a four proton–coupled electron transfer (PCET) process, which can be expressed as follows

$$* + OH^{-} \rightarrow OH^{*} + e^{-}$$

$$OH^{*} + OH^{-} \rightarrow O^{*} + H_{2}O + e^{-}$$

$$O^{*} + OH^{-} \rightarrow OOH^{*} + e^{-}$$

$$OOH^{*} + OH^{-} \rightarrow O_{2} + H_{2}O + e^{-}$$

where \* donates the active site, and OH\*, O\* and OOH\* are OER intermediates. Based on the computational hydrogen electrode (CHE) model [6], the Gibbs free energies for all intermediates during OER were calculated via the equation

$$\Delta G = \Delta E + \Delta E_{\text{ZPE}} - T\Delta S - neU$$

where  $\Delta E$  is the adsorption energy of the adsorbed intermediates, and  $\Delta E_{ZPE}$  and  $\Delta S$  are the difference in the zero-point energy and the change in entropy before and after adsorption, respectively. *U* is the applied potential.

According to the definition, the theoretical overpotential  $(\eta)$  is defined as

$$\eta = \max(\Delta G)/e - 1.23 \text{ V}$$

# **Supporting Figures and Tables**



**Figure S1**. a) The corrosion engineering reaction in bulk  $FeCl_3$  aqueous; b) The corrosion engineering reaction mediated by positive charged droplets.



**Figure S2**. a-b) SEM images of the E-NiFeOOH prepared using negative droplets (20 min). c) SEM images of NiFeOOH prepared in the FeCl<sub>3</sub> bulk aqurous (20 min). d) SEM images of E-NiFeOOH prepared using positive droplets (20 min).



**Figure S3**. SEM images of the E-NiFeOOH with different reaction time (a-10 min, b-20 min and c-60 min).



**Figure S4**. Digital pictures of Ni foam, I-NiFeOOH and E-NiFeOOH with  $1 \times 1 \text{ cm}^2$  area (from left to right).



Figure S5. AFM image and the corresponding height profiles of E-NiFeOOH nanosheets.



Figure S6. a) XRD profiles of E-NiFeOOH. b) XPS survey of I-NiFeOOH and E-NiFeOOH.



**Figure S7**. a-b) Polarization curves and corresponding Tafel plots of the Ni foam, E-NiFeOOH-20, 30, 40 min and Pt/C/NF electrodes for HER. c) Long-term stability tests and stability measurements of E-NiFeOOH-30 min. d) Comparison of recent representative works of NiFe-based HER electrocatalysts at 10 mA/cm<sup>2</sup> (Table S2).



**Figure S8**. a-b) Polarization curves and corresponding Tafel plots of I-NiFeOOH and E-NiFeOOH for HER. c) Comparison of current density of Ni foam, I-NiFeOOH,

Pt/C/NF and E-NiFeOOH at the overpotential of 300 mV. d-e) Polarization curves and corresponding Tafel plots of I-NiFeOOH and E-NiFeOOH for OER. f) Comparison of current density of Ni foam, I-NiFeOOH, RuO<sub>2</sub>/NF and E-NiFeOOH at the overpotential of 300 mV.



Figure S9. The concept scheme of charged droplets mediated corrosion engineering.



**Figure S10.** The characterization of electrocatalysts after OER reaction a-d) SEM, TEM and HRTEM images, respectively. e-h) XRD spectra and high solution XPS spectra of Fe 2p, Ni 2p and O 2p, respectively.



**Figure S11**. a) EIS Nyquist plots of the Ni foam and E-NiFeOOH electrodes prepared using different reaction times in 1 M KOH electrolyte. b-d) Cyclic voltammetry curves of Ni foam, E-NiFeOOH and I-NiFeOOH with different rates from 20 to 160 mV/s in 1 M KOH electrolyte. e)  $C_{dl}$  values calculated by the capacitive current at 0.17 V (vs. RHE). f) ECSA-normalized LSV curves of I-NiFeOOH and E-NiFeOOH.

**Table S1**. The calculated XPS peak area of M-OH and M-O of I-NiFeOOH and E-NiFeOOH with corresponding estimated  $O_v$  density.

| Samples   | Oxygen-vacancy | M-O Peak Area | O <sub>v</sub> density |  |
|-----------|----------------|---------------|------------------------|--|
|           | Peak Area      |               |                        |  |
| I-NiFeOOH | 59030.02       | 6479.35       | 9.11                   |  |
| E-NiFeOOH | 84241.48       | 4329.51       | 19.46                  |  |

| Table  | <b>S2</b> . | Comparison     | of H   | ER    | performance   | of   | E-NiFeOOH-30 | min | with | other |
|--------|-------------|----------------|--------|-------|---------------|------|--------------|-----|------|-------|
| advanc | ed N        | liFe-based ele | ctroca | ataly | sts in 1 M KC | )H r | nedia.       |     |      |       |

| Electrocatalysts                          | Electrolyte | <b>η</b> 10 | Tafel slope | Reference                                |  |
|-------------------------------------------|-------------|-------------|-------------|------------------------------------------|--|
|                                           |             | (mV)        | (mV/dec)    |                                          |  |
|                                           |             |             |             |                                          |  |
| E-NiFeOOH                                 | 1 M KOH     | 145         | 115         | This work                                |  |
| Porous NiCoFe LTH                         | 1 M KOH     | 200         | 70          | ACS Energy Lett. 2016, 1, 445            |  |
| Exfoliated NiFe                           | 1 M KOH     | 210         | 110         | Adv. Mater. 2017, 29, 1700017-1700024    |  |
| LDH/defective graphene                    |             |             |             |                                          |  |
| VOOH hollow nanosphere                    | 1 М КОН     | 164         | 104         | Angew. Chem., Int. Ed. 2017, 56, 573-577 |  |
| NiFe LDH                                  | 1 M KOH     | 269         | /           | Adv. Mater. 2018, 1706279                |  |
| Ni <sub>2</sub> P                         | 1 M KOH     | 220         | /           | Energy Environ. Sci. 2015, 8, 2347.      |  |
| Ni <sub>3</sub> S <sub>2</sub> NSs/NF     | 1 M KOH     | 223         | /           | J. Am. Chem. Soc. 2015, 137, 14023-14026 |  |
| Ni/Ni(OH) <sub>2</sub> /Graphite          | 1 M KOH     | 225         | /           | Proc. Natl. Acad. Sci. U.S.A. 2017, 114, |  |
|                                           |             |             |             | 8986–8990.                               |  |
| porous NiFe-oxide                         | 1 M KOH     | 197         | 130         | ACS Appl. Mater. Interfaces 2017, 9,     |  |
| nanocubes                                 |             |             |             | 41906-41915                              |  |
| NiFe LDH@NiCoP/NF                         | 1 M KOH     | 120         | 88.2        | Adv. Funct. Mater. 2018, 28, 1706847     |  |
| Ni <sub>12</sub> P <sub>5</sub>           | 1 M KOH     | 170         | /           | ACS Catal. 2017, 7, 103-109              |  |
| NiCoP/NF                                  | 1 M KOH     | 185         | 124.4       | Adv. Funct. Mater. 2018, 28, 1706847     |  |
| NiFeOF HF                                 | 1 M KOH     | 253         | 96          | ACS Catal. 2017, 7, 12, 8406–8412        |  |
| Cu@NiFe LDH                               | 1 M KOH     | 190         | /           | Adv. Energy Mater. 2015, 5, 1401660      |  |
| NiCo <sub>2</sub> S <sub>4</sub> nanowire | 1 M KOH     | 210         | 58.9        | Adv. Funct. Mater. 2016, 26, 4661-4672   |  |
| NiFe LDH/NF                               | 1 M KOH     | 210         | /           | Science 2014, 345, 1593-15960            |  |
| Ni nanosheets                             | 1 M KOH     | 130         | 62          | Adv. Mater. 2020, 1906915                |  |

| Electrocatalysts                           | Electrolyte | η10 (mV) | Tafel slope | Reference                        |  |
|--------------------------------------------|-------------|----------|-------------|----------------------------------|--|
|                                            |             |          | (mV/dec)    |                                  |  |
| E-NiFeOOH                                  | 1 М КОН     | 215      | 30.7        | This work                        |  |
| Ni <sub>2</sub> P@NiFe-LDH                 | 1 M KOH     | 205      | 32          | Chem. Sci. 2018, 9, 1375.        |  |
| NiFe-LDH@DG <sub>10</sub>                  | 1 M KOH     | 210      | 52          | Adv. Mater. 2017, 29, 1700017.   |  |
| NiFe-LDH-V <sub>Ni</sub>                   | 1 M KOH     | 229      | 62.9        | Small 2018, 14, 1800136.         |  |
| NiFe-LDH@graphene                          | 1 M KOH     | 230      | 42          | ACS Nano 2015, 9, 1977.          |  |
| Defect NiFe-LDH                            | 1 M KOH     | 236      | 39          | Adv. Energy Mater. 2019, 9,      |  |
|                                            |             |          |             | 1900881.                         |  |
| $Fe_{6.4}Ni_{16.1}P_{12.9}B_{4.3}O_{60.2}$ | 1 M KOH     | 249      | 40.3        | ACS Nano 2019, 13, 12969.        |  |
| Fe <sup>2+</sup> -NiFe-LDH                 | 1 M KOH     | 250      | 69          | Angew. Chem., Int. Ed. 2018, 57, |  |
|                                            |             |          |             | 9392                             |  |
| Atomic layer NiFe-                         | 1 M KOH     | 254      | 32          | Adv. Energy Mater. 2018, 8,      |  |
| LDH                                        |             |          |             | 1703585.                         |  |
| NiFe-LDH/C                                 | 1 M KOH     | 270      | 56          | Angew. Chem. 2017, 129, 11411.   |  |
| NiFe-LDH                                   | 1 M KOH     | 280      | 47.6        | J. Am. Chem. Soc. 2014, 136,     |  |
|                                            |             |          |             | 13118.                           |  |
| Ultra-thin NiFe-LDH                        | 1 M KOH     | 280      | 46          | Adv. Energy Mater. 2016, 6,      |  |
|                                            |             |          |             | 1502585.                         |  |
| NiFe-LDH                                   | 1 M KOH     | 280      | 49.4        | Angew. Chem. 2018, 130, 178.     |  |
| nanoprisms                                 |             |          |             |                                  |  |
| NiFe-LDH NS                                | 1 M KOH     | 300      | 40          | Nat. Commun. 2014, 5, 4477.      |  |
| Porous NiFe oxides                         | 1 M KOH     | 328      | 42          | Adv. Sci. 2015, 2, 1500199.      |  |
| R-NiFe CPs                                 | 1 M KOH     | 225      | 27.78       | Adv. Energy Mater. 2020, 2002228 |  |
| NiFeCr/NF                                  | 1 M KOH     | 270      | 36          | Energy Environ. Sci., 2020       |  |

**Table S3**. Comparison of OER performance of E-NiFeOOH-40 min with otheradvanced NiFe-based electrocatalysts in 1 M KOH media.

**Table S4.** Comparison of overall water splitting performance of E-NiFeOOH-30min/E-NiFeOOH-40minelectrodescouplewithotheradvancedNiFe-basedelectrocatalystsin 1 M KOH media.

| Electrocatalysts                          | Electrolyte | η10 (V) | Reference                                |  |
|-------------------------------------------|-------------|---------|------------------------------------------|--|
| E-NiFeOOH                                 | 1 М КОН     | 1.59    | This work                                |  |
| NiFe LDH/Mxene/NF                         | 1 M KOH     | 1.51    | Nano Energy, 2019, 63, 103880            |  |
| Ni/NiFe LDH                               | 1 M KOH     | 1.53    | J. Mater. Chem. A, 2019, 7, 21722-21729  |  |
| NiCo <sub>2</sub> S <sub>4</sub> /NF      | 1 M KOH     | 1.63    | Adv. Funct. Mater. 2016, 26, 4661-4672   |  |
| Ni <sub>2</sub> P                         | 1 M KOH     | 1.63    | Energy Environ. Sci 2015, 8, 2347-2351   |  |
| CoP films                                 | 1 M KOH     | 1.63    | Angew. Chem. 2015, 127, 6349-6352.       |  |
| Fe-Ni/NCNTs                               | 1 M KOH     | 1.64    | Angew. Chem., 2018, 57, 8921.            |  |
| NiFe/NiCo <sub>2</sub> O <sub>4</sub> /NF | 1 M KOH     | 1.67    | Adv. Funct. Mater., 2016, 26, 3515-3523  |  |
| EG/Co <sub>0.85</sub> Se/NiFe-LDH         | 1 M KOH     | 1.67    | Energy Environ. Sci. 2016, 9, 478-483    |  |
| CoMnCH/NF                                 | 1 M KOH     | 1.68    | J. Am. Chem. Soc., 2017, 139, 8320-8328  |  |
| FeCoNi/NCP                                | 1 M KOH     | 1.687   | ACS Catal. 2017, 7, 469-479              |  |
| PO-Ni/Ni-NCNFs                            | 1 M KOH     | 1.69    | Nano Energy, 2018, 51, 286.              |  |
| NiFe LDHs/NF                              | 1 M KOH     | 1.7     | Science 2014, 345, 1593-1596             |  |
| Co(OH) <sub>2</sub> /NCNTs/NF             | 1 M KOH     | 1.72    | Nano Energy, 2018, 47, 96-104            |  |
| Ni <sub>3</sub> S <sub>2</sub>            | 1 M KOH     | 1.76    | J. Am. Chem. Soc. 2015, 137, 14023-14026 |  |
| NiFe OF                                   | 1 M KOH     | 1.83    | ACS Catal. 2017, 7, 12, 8406–8412        |  |
| Pt/C-IrO <sub>2</sub>                     | 1 M KOH     | 1.7     | Small 2019, 15, 1803639                  |  |

| System                             |      | E (eV)  | $E_{ZPE}(eV)$ | TS (eV) |
|------------------------------------|------|---------|---------------|---------|
|                                    | *    | -161.56 | 0             | 0       |
| NiFe-                              | OH*  | -170.20 | 0.31          | 0.03    |
| LDH                                | O*   | -166.08 | 0.05          | 0.06    |
| (Ni <sub>9</sub> Fe <sub>1</sub> ) | OOH* | -174.50 | 0.43          | 0.12    |
|                                    | *    | -163.33 | 0             | 0       |
| NiFe-                              | OH*  | -172.43 | 0.29          | 0.09    |
| LDH-O <sub>v</sub>                 | O*   | -167.93 | 0.04          | 0.10    |
| (Ni <sub>3</sub> Fe <sub>1</sub> ) | OOH* | -176.97 | 0.41          | 0.17    |

**Table S5**. Calculated total energy E, zero-point energy E<sub>ZPE</sub>, and entropic contribution TS for all intermediates.

NiFe-LDH(Ni<sub>9</sub>Fe<sub>1</sub>):



# References

- 1. G. Kresse, J. Furthmüller, Phys. Rev. B. 1996, 54, 11169-11186.
- 2. G. Kresse, J. Hafner, Phys. Rev. B, 1994, 49, 14251-14269.
- 3. P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953-17979.
- 4. J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
- 5. S. Grimme, J. Comput. Chem. 2006, 27, 1787-1799.
- A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl, J. K. Nørskov, Energy Environ. Sci., 2010, 3, 1311-1315.