Supporting Information

Supercapattery-driven electrolyzer both empowered by the same superb

electrocatalyst

Thangavel Kavinkumar, Selvaraj Seenivasan, Amarnath T. Sivagurunathan and Do-Heyoung Kim*

School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea.

*Corresponding author's email: kdhh@chonnam.ac.kr

Tel. (office): +82-62-530-1894

Experimental section

Synthesis of CuCo₂O₄ nanoneedles: Typically, CoCl₂·6H₂O (2 mM), CuCl₂·6H₂O (1 mM), and urea (20 mM) were dissolved in 40 mL of deionized (DI) water under stirring. Cleaned NF was immersed in the as-prepared reaction mixture. The above solution was then transferred into a 100 mL Teflon autoclave and maintained at 120 °C for 10 h. Finally, the resulting CuCo₂O₄-coated NF was annealed at 300 °C under a N₂ atmosphere. The obtained CuCo₂O₄ was rinsed with DI water and ethanol and then dried at 70 °C for further use.

Synthesis of the Encapsulated $CuCo_2O_4/MoNi$: Typically, 1 mmol Ni(NO₃)₂·6H₂O, 1 mmol Na₂MoO₄·2H₂O, and 7.5 mmol urea were mixed in 40 mL of DI water under stirring. Then, a piece of NF coated with the CuCo₂O₄ was then immersed in the reaction mixture. Then, it was

transferred to a 100 mL Teflon-lined autoclave and kept at 150°C for 3 h. Then, the product was washed with DI water and ethanol and dried at 60°C. The $CuCo_2O_4$ /MoNi were obtained by annealing the above prepared sample in a H₂/Ar (5:95) atmosphere at 500 °C for 2 h.

Preparation of NiO encapsulated CuCo₂O₄/MoNi: Thin NiO layers were deposited over the CuCo₂O₄/MoNi architecture on NF via 420 deposition cycles using a laboratory-built flow-type ALD reactor.¹ During deposition, the temperature was maintained at 175 °C.

Characterizations

XRD data of the samples were recorded by a Rigaku X-ray diffractometer X-ray diffractometer with CuKα radiation. The morphologies and microstructures of the samples were investigated by FE-SEM (JEOL JSM-7500F) and TEM (TECNAI G2 F20 TEM system). XPS was performed on an ESCALAB-MKII, VG Scientific Co. system. The Brunauer-Emmett-Teller (BET, ASAP2010, Micromeritics) was done to measure surface area of the prepared products.

Water splitting measurements

Electrocatalytic properties of the as-prepared samples on the NF were carried out in a three-electrode cell, where SCE and Pt foil were employed as the reference and counter, electrodes using the electrochemical workstation (WonATech WBCS30000), respectively. Additionally, 5 mg of Pt/C (or RuO₂) and 10 μ L of Nafion were dispersed in 1 mL of a water/alcohol mixture solution (3:1) using ultrasonication to prepare an ink. Finally, 50 μ L of the catalyst ink was coated on NF and dried at 60°C. Additionally, LSV measurements were performed at 2 mV s⁻¹ for the OER and HER in a 1 M KOH. The EIS measurement were conducted using a Parstat 3000 workstation (0.01 Hz to 100 kHz with a 10 mV amplitude). A gas

chromatography (074-594-P1E Micro GC Fusion, INFICON) was used to analyze the amount of the gaseous products. All potentials were calibrated to the RHE using Eq. 1; η was obtained using Eq. 2 and the Tafel slope was obtained using Eq. 3:

$$E_{RHE} = E_{SCE} + 0.059 pH + 0.247,$$
(1)

$$\eta = E_{\rm RHE} - 1.23, \tag{2}$$

$$\eta = b \log j + a . \tag{3}$$

Supercapattery measurements

The electrochemical capacitive properties of the as-prepared heterostructure electrodes were carried out in 2 M KOH aqueous solution using a three-electrode cell. The as-fabricated materials on NF, Pt foil and SCE were employed as the working, counter and reference electrodes, respectively. The mass loading of the NiO@CuCo₂O₄/MoNi/MoO₂ heterostructure and AC were measured to be 4.3 and 5.4 mg cm⁻², respectively. In the supercapattery cell, the NiO@CuCo₂O₄/MoNi/MoO₂ heterostructure electrode used as the cathode and AC as the anode with 2M KOH/PVA gel as the electrolyte.

Specific capacitance (C_s , F g⁻¹) and specific capacity (C_m , C g⁻¹) from GCD test was calculated by using the relation,^{2, 3}

$$=\frac{2i/V dt}{m (V_f - V_i)^2}$$

$$C_m = C_s \times \Delta V$$
(5)

where, m (g), i (A), (V_f - V_i), and $\int V dt$ are the mass of the active materials coated on NF, applied current, functional potential frame, and the integral area of discharge curve, respectively.

The energy density (E) and power density (P) of the supercapattery were calculated according to the following formulas:

$$E = \frac{I \int V \, dt}{3.6} \tag{6}$$
$$P = \frac{3600 \times E}{t} \tag{7}$$

Where I (A g⁻¹) and t (s) are the current density, and discharge time of the supercapattery cell, respectively.

Figure S1. XRD pattern of the CuCo₂O₄ nano-needle from the NF substrate.

Figure S2. FE-SEM images of a) CuCo₂O₄, b) MoNi, and c) CuCo₂O₄/MoNi.

Figure S3. N₂ adsorption-desorption isotherms of a) CuCo₂O₄, b) MoNi, c) CuCo₂O₄/MoNi and d) NiO@CuCo₂O₄/MoNi heteronanostructure. Inset shows corresponding pore size distribution profiles.

Figure S4. CV profiles of a) $CuCo_2O_4$, b) MoNi, c) $CuCo_2O_4$ /MoNi and d) NiO@CuCo_2O_4/MoNi at different sweep rates in 1 M KOH.

Figure S5. Nyquist plots for the as-prepared samples at -0.2 V. The inset shows the electrochemical equivalent circuit.

Figure S6. XPS spectra of a) Cu 2p, b) Co 2p, c) Ni 2p, d) Mo 3d and e) O 1s for NiO@CuCo₂O₄/MoNi heterostructure before and after OER, HER, and supercapattery test.

Figure S7. FE-SEM images of the NiO@CuCo₂O₄/MoNi heterostructure after a) OER, b) HER, and c) supercapattery test.

Figure S8. HR-TEM images of the NiO@CuCo₂O₄/MoNi heterostructure after a, b) HER test and c) the corresponding elemental mapping of NiO@CuCo₂O₄/MoNi heterostructure.

Figure S9. HR-TEM images of the NiO@CuCo₂O₄/MoNi heterostructure after a, b) OER test and c) the corresponding elemental mapping of NiO@CuCo₂O₄/MoNi heterostructure.

Figure S10. HR-TEM images of the NiO@CuCo₂O₄/MoNi heterostructure after a, b) 50000 cycling test and c) the corresponding elemental mapping of NiO@CuCo₂O₄/MoNi heterostructure.

Table S1. Comparison of HER performances of NiO@CuCo $_2O_4$ /MoNi heterostructure with other reported electrocatalysts.

	Electrolyte	Overpotential at 50	Tafel slope	D-f	
Catalyst		mA cm ⁻² (mV)	(mV dec ⁻¹)	Ket.	
NiO@CuCo ₂ O ₄ /MoNi	1 M KOH	(1.0		This	
heterostructure		61.0	44.2	work	
NiMoOx/NiMoS	1 M KOH	~63	-	4	
MoS ₂ /Ni ₃ S ₂	1 M KOH	~175	-	5	
NiCo ₂ O ₄ @NiMoO ₄	1 M KOH	300	94.0	6	
NiCo ₂ O ₄ @Ni _{0.796} CoLDH	1 M KOH	115	56.4	7	
FeOOH/NiCo ₂ O ₄	1 M KOH	146	41.3	8	
Ni(OH) ₂ @CuS	1 M KOH	95	42.0	9	
H-Fe-CoMoS	1 M KOH	138	98.0	10	
Co/Co ₂ Mo ₃ O ₈	1 M KOH	~110	-	11	
NiFe-LDH/NiCo ₂ O ₄	1 M KOH	192	59.0	12	
Ni ₃ N/Pt	1 M KOH	83	-	13	
Mo-NiCoP	1 M KOH	121	-	14	
NiCo ₂ O ₄ @CoMoO ₄	1 M KOH	121	77.0	15	

 Table S2. Comparison of OER performances of NiO@CuCo2O4/MoNi heterostructure with

 other reported electrocatalysts.

Catalyst	Electrolyte	Overpotential at 100	Tafel slope	Ref.	
		mA cm ⁻² (mV)	(mV dec ⁻¹)		
NiO@CuCo ₂ O ₄ /MoNi	1 M KOH	370	60.1	This	
heterostructure		570	09.1	work	
NiCo ₂ O ₄ @CoMoO ₄	1 M KOH	~490	-	15	
NiCo ₂ O ₄ @NiMoO ₄	1 M KOH	~420	-	16	
Fe ₂ O ₃ @CuO NTs	1 M KOH	~380	-	17	
Ni@Co-Ni-P	1 M KOH	380	65	18	
Co ₃ O ₄ /NiCo ₂ O ₄	1 M KOH	495	88	19	
NiCoFe phosphate NSs-C	1 M KOH	~350	-	20	
Ni ₂ P@NF-6	1 M KOH	590	297	21	
p-Cu _{1-x} NNi _{3-y} /FeNiCu	1 M KOH	~350	_	22	
NiCoP NWAs/NF	1 M KOH	~320	-	23	

Table S3. Comparison of water splitting performance of NiO@CuCo₂O₄/MoNi heterostructure with other reported bi-functional electrocatalysts based on transition metals.

Catalyst	Electrolyte	Voltage (V)	Ref.
NiO@CuCo ₂ O ₄ /MoNi	1 M KOH	$1.54 \text{ V} @ 10 \text{ mA cm}^2$	This
heterostructure		1.54 V @ 10 IIIA CIII	work
E-Mo-NiCoP	1 M KOH	1.61 V @ 10 mA cm ⁻²	14
FeCo ₂ S ₄	1 M KOH	1.56 V @ 10 mA cm ⁻²	24
NiSe/Ni ₃ Se ₂	1 M KOH	1.6 V @ 10 mA cm ⁻²	25
NiS-Ni ₂ P ₂ S ₆	1 M KOH	1.64 V @ 10 mA cm ⁻²	26
NiFe/NiCo ₂ O ₄	1 M KOH	1.67 V @ 10 mA cm ⁻²	27
NiCo ₂ O ₄ /NiCoP	1 M KOH	1.66 V @ 10 mA cm ⁻²	28
Ni ₃ S ₂	1 M KOH	1.57 V @ 10 mA cm ⁻²	29
Ni/NiO	1 M KOH	1.71 V @ 10 mA cm ⁻²	30
CoxPO ₄ /CoP	1 M KOH	1.91 V @ 10 mA cm ⁻²	31
Co ₉ S ₈ -CoSe ₂	1 M KOH	1.66 V @ 10 mA cm ⁻²	32
MoP@Ni ₃ P/NF	1 M KOH	1.67 V @ 10 mA cm ⁻²	33

Material	Fabrication	Current	Electrolyte	C _s F g ⁻¹	Stability	Ref.
	method	Collector		(Current	(Cycles)	
				density A g ⁻¹)		
NiO@CuCo ₂ O ₄ /MoNi heterostructure	Hydrothermal/	NF	2 M KOH	3527.7 F g ⁻¹	84.2%	This
	ALD			(1587.5 C g ⁻¹)	(50000)	work
				(1 A g ⁻¹)		
Cu ₂ O@Mn(OH) ₂	Solvent process	NF	2 M KOH	647.2 F g ⁻¹	71.5%	34
				(0.5 A g^{-1})	(3000)	
CuCo ₂ O ₄ /MnCo ₂ O ₄	Hydrothermal	NF	2 M KOH	1434 F g ⁻¹	98.4%	35
				(0.5 A g^{-1})	(5000)	
CuCo ₂ O ₄ @Ni(OH) ₂	Hydrothermal and	NF	6 M KOH	1902.0 F g ⁻¹	87.6%	36
	Electrodeposition			(2 A g ⁻¹)	(50000)	
CuCo ₂ O ₄ /NiMoO ₄	Hydrothermal	NF	3 М КОН	2215.0 F g ⁻¹	98%	37
				(1 A g^{-1})	(8000)	

Table S4. Summary of electrochemical performance of transition metal oxide heteronanostructure reported in literature.

CoMoS@Co(OH) ₂	Hydrothermal	Carbon	ЗМ КОН	1711.0 F g ⁻¹	90.3%	38
	and calcination	cloth		(20 mA cm^{-2})	(5000)	
CuCo ₂ O ₄ @Co(OH) ₂	Hydrothermal	NF	1 M KOH	375.0 F g ⁻¹	85.8%	39
				(1 A g ⁻¹)	(10000)	
CuCo ₂ O ₄ /CuO nanowire	Hydrothermal	NF	2 M KOH	642.0 F g ⁻¹	88%	40
				(1 A g ⁻¹)	(5000)	
NiO/NiCo ₂ O ₄ /Co ₃ O ₄	sol-gel process	NF	2M KOH	1600.0 F g ⁻¹	94.9%	41
	and calcination			(2.5 A g ⁻¹)	(1000)	
Co ₃ O ₄ @CoNi-LDH	Hydrothermal	NF	2M KOH	2676.9 F g ⁻¹	67.7%	42
				(0.5 A g^{-1})	(10000)	
CuCo ₂ O ₄ @Ni(OH) ₂	Hydrothermal and	Carbon	2 M KOH	2160.0 F g ⁻¹	92%	43
	Chemical	fiber		(5 A g ⁻¹)	(5000)	
	deposition	cloth				
CuCo ₂ O ₄ NWs@NiMoO ₄	Hydrothermal	NF	6 M KOH	2207.0 F g ⁻¹	95.6%	44
				(1.25 A g^{-1})	(5000)	
CuCo ₂ O ₄ /NiO nanotrees	Hydrothermal and	NF	1 M NaOH	2219.0 F g ⁻¹	95.3%	45

Chemical bath	(1 A g ⁻¹)	(10000)	
deposition			

HSC devices	Cell	Electrolyte	C _s /F g ⁻¹	Stability	Energy	Power	Ref.
	voltage		(Current	(Cycles)	density	density	
	(V)		density A g ⁻¹)		(W h kg ⁻¹)	(W kg ⁻¹)	
NiO@CuCo ₂ O ₄ /MoNi	1.6	КОН	226.7 F g ⁻¹	90.4%	80.6	692.8	This
heterostructure//AC			(362.8 C g ⁻¹)	(25000)			work
			(1 A g ⁻¹)				
CuCo ₂ O ₄ /CuO//RGO/Fe ₂ O ₃	1.6	КОН	93.0 F g ⁻¹	83.0%	33.0	200.0	40
			(0.25 A g ⁻¹)	(5000)			
Co ₃ O ₄ @CoNi-LDH//AC	1.5	КОН	195.9 F g ⁻¹	103.5%	61.2	750	42
			(1 A g ⁻¹)	(5000)			
CuCo ₂ O ₄ /MnCo ₂ O ₄ //graphene	1.6	КОН	118.4 F g ⁻¹	88.4%	42.1	400.0	35
			(0.5 A g^{-1})	(10000)			
CuCo ₂ O ₄ /NiMoO ₄ //AC	1.5	КОН	~140.0 F g ⁻¹	89%	44.8	374.2	37
			(1 A g^{-1})	(5000)			
CuCo ₂ O ₄ @NiMoO ₄ //AC	1.6	КОН	128.2 F g ⁻¹	80.2 %	40.0	-	44

Table S5. Comparison of energy storage performance of various Cu and Co-based HSCs.

			(1 A g ⁻¹)	(5000)			
CNTs@NCDHNs//rGO-Fe ₂ O ₃	1.6	КОН	108.7 F g ⁻¹	~93.5%	54.6	1130.0	46
			(1 A g ⁻¹)	(1000)			
NiCo-LDH/NiMoSx// Fe ₂ O ₃ /rGO	1.6	КОН	203.9 F g ⁻¹	91.5%	72.6	522.7	47
			(3 mA cm ⁻²)	(10000)			
CuCo ₂ O ₄ /NiO//AC	1.6	NaOH	155.0 F g ⁻¹	91.5%	51.8	866.0	45
			(1 A g ⁻¹)	(5000)			
CuCo ₂ O ₄ @MnMoO ₄ //graphene	1.6	КОН	165.7 F g ⁻¹	92 .5%	58.9	670.0	48
			(1 A g ⁻¹)	(6000)			
CuCo ₂ O ₄ @PPy//Carbon	1.4	КОН	208.0 F g ⁻¹	92 %	52.0	748.0	49
			(2 A g ⁻¹)	(5000)			
CuCo ₂ O ₄ @Ni(OH) ₂ //AC	1.6	КОН	108.5 F g ⁻¹	93.7%	38.6	800.0	36
			(1 A g ⁻¹)	(5000)			
CuCo2S4/CuCo2O4//graphene	1.6	КОН	90.4 F g ⁻¹	73.0%	33.2	800.0	50
			(1 A g ⁻¹)	(5000)			

References

- T. Kavinkumar, S. Seenivasan, H. H. Lee, H. Jung, J. W. Han and D.-H. Kim, *Nano Energy*, 2021, 81, 105667.
- Y. Z. Chen, T. F. Zhou, L. Li, W. K. Pang, X. M. He, Y. N. Liu and Z. P. Guo, ACS Nano, 2019, 13, 9376-9385.
- 3. S. L. Zhang and N. Pan, Adv. Energy Mater., 2015, 5, 1401401.
- P. L. Zhai, Y. X. Zhang, Y. Z. Wu, J. F. Gao, B. Zhang, S. Y. Cao, Y. T. Zhang, Z. W. Li, L. C. Sun and J. G. Hou, *Nat. Commun.*, 2020, **11**, 5462.
- J. Zhang, T. Wang, D. Pohl, B. Rellinghaus, R. H. Dong, S. H. Liu, X. D. Zhuang and X. L. Feng, *Angew. Chem. Int. Ed.*, 2016, 55, 6702-6707.
- 6. D. Cui, R. D. Zhao, J. Q. Dai, J. Xiang and F. F. Wu, Dalton T., 2020, 49, 9668-9679.
- M. Li, L. Tao, X. Xiao, X. Jiang, M. Wang and Y. Shen, ACS Sustain. Chem. Eng., 2019, 7, 4784-4791.
- 8. X. Cao, Y. Sang, L. Wang, G. Ding, R. Yu and B. Geng, *Nanoscale*, 2020, **12**, 19404-19412.
- S. Q. Liu, H. R. Wen, Ying-Guo, Y. W. Zhu, X. Z. Fu, R. Sun and C. P. Wong, *Nano Energy*, 2018, 44, 7-14.
- Y. N. Guo, X. Zhou, J. Tang, S. Tanaka, Y. V. Kaneti, J. Na, B. Jiang, Y. Yamauchi, Y. S. Bando and Y. Sugahara, *Nano Energy*, 2020, 75.
- M. J. Zang, N. Xu, G. X. Cao, Z. J. Chen, J. Cui, L. Y. Gan, H. B. Dai, X. F. Yang and P. Wang, ACS Catal., 2018, 8, 5062.
- 12. Z. Q. Wang, S. Zeng, W. H. Liu, X. W. Wang, Q. W. Li, Z. G. Zhao and F. X. Geng, ACS Appl. Mater. Interfaces, 2017, 9, 1488-1495.

- Y. H. Wang, L. Chen, X. M. Yu, Y. G. Wang and G. F. Zheng, *Adv. Energy Mater.*, 2017, 7, 1601390.
- 14. J. H. Lin, Y. T. Yan, C. Li, X. Q. Si, H. H. Wang, J. L. Qi, J. Cao, Z. X. Zhong, W. D. Fei and J. C. Feng, *Nano-Micro Lett.*, 2019, **11**, 3676.
- Y. Q. Gong, Z. Yang, Y. Lin, J. L. Wang, H. L. Pan and Z. F. Xu, J. Mater. Chem. A, 2018, 6, 16950-16958.
- 16. X. Q. Du, J. P. Fu and X. S. Zhang, Chemcatchem., 2018, 10, 5533-5540.
- Y. Gao, N. Zhang, C. R. Wang, F. Zhao and Y. Yu, ACS Appl. Energ. Mater., 2020, 3, 666-674.
- 18. W. Li, X. F. Gao, X. G. Wang, D. H. Xiong, P. P. Huang, W. G. Song, X. Q. Bao and L. F. Liu, J. Power Sources, 2016, 330, 156-166.
- 19. H. Hu, B. Y. Guan, B. Y. Xia and X. W. Lou, J. Am. Chem. Soc., 2015, 137, 5590-5595.
- 20. M. A. Z. G. Sial, H. F. Lin and X. Wang, Nanoscale, 2018, 10, 12975-12980.
- 21. J. L. Zheng, W. Zhou, T. Liu, S. J. Liu, C. B. Wang and L. Guo, *Nanoscale*, 2017, 9, 4409-4418.
- 22. Y. P. Zhu, G. Chen, Y. J. Zhong, Y. B. Chen, N. N. Ma, W. Zhou and Z. P. Shao, *Nat. Commun.*, 2018, **9**, 2326.
- 23. J. Z. Li, G. D. Wei, Y. K. Zhu, Y. L. Xi, X. X. Pan, Y. Ji, I. V. Zatovsky and W. Han, J. Mater. Chem. A, 2017, 5, 14828-14837.
- 24. J. R. Hu, Y. Q. Ou, Y. H. Li, D. Gao, Y. H. Zhang and P. Xiao, ACS Sustain. Chem. Eng., 2018, 6, 11724-11733.

- 25. F. F. Zhang, Y. Pei, Y. C. Ge, H. Chu, S. Craig, P. Dong, J. Cao, P. M. Ajayan, M. X. Ye and J. F. Shen, *Adv. Mater. Interfaces*, 2018, 5, 1701507.
- 26. X. Y. Zhang, S. Zhang, J. Li and E. K. Wang, J. Mater. Chem. A, 2017, 5, 22131-22136.
- 27. C. L. Xiao, Y. B. Li, X. Y. Lu and C. Zhao, Adv. Funct. Mater., 2016, 26, 3515-3523.
- 28. W. Jin, J. P. Chen, H. B. Wu, N. Zang, Q. W. Li, W. Q. Cai and Z. X. Wu, Catal. Sci.Technol., 2020, 10, 5559-5565.
- 29. J. F. Zhang, Y. Li, T. Y. Zhu, Y. Wang, J. W. Cui, J. J. Wu, H. Xu, X. Shu, Y. Q. Qin, H. M. Zheng, P. M. Ajayan, Y. Zhang and Y. C. Wu, ACS Appl. Mater. Interfaces 2018, 10, 31330-31339.
- 30. H. Sun, Z. Ma, Y. Qiu, H. Liu and G.-g. Gao, Small, 2018, 14, 1800294.
- 31. Y. Yang, H. L. Fei, G. D. Ruan and J. M. Tour, Adv. Mater., 2015, 27, 3175-3180.
- 32. S. Chakrabartty, S. Karmakar and C. R. Raj, ACS Appl. Nano Mater., 2020, 3, 11326-11334.
- 33. F. M. Wang, J. W. Chen, X. P. Qi, H. Yang, H. H. Jiang, Y. Q. Deng and T. X. Liang, *Appl. Surf. Sci.* 2019, **481**, 1403-1411.
- 34. H. Guan, P. Cai, X. Zhang, Y. Zhang, G. Chen and C. Dong, J. Mater. Chem. A, 2018, 6, 13668-13675.
- 35. S. Liu, K. S. Hui, K. N. Hui, J. M. Yun and K. H. Kim, J. Mater. Chem. A, 2016, 4, 8061-8071.
- 36. W. Liu, H. Chen, H. Liao, K. Xiang, W. Chen and X. Li, *Ind. Eng. Chem. Res.*, 2019, **58**, 21233-21241.
- 37. G. F. Li, B. Song, X. Cui, H. Z. Ouyang, K. L. Wang, Y. M. Sun and Y. Q. Wang, ACS Sustain. Chem. Eng., 2020, 8, 1687-1694.

- 38. S. J. Patil and D.-W. Lee, J. Mater. Chem. A, 2018, 6, 9592-9603.
- 39. Y. Zhang, H. Liu, M. Huang, J. M. Zhang, W. Zhang, F. Dong and Y. X. Zhang, Chemelectrochem., 2017, 4, 721-727.
- 40. Y. Wang, C. Shen, L. Niu, R. Li, H. Guo, Y. Shi, C. Li, X. Liu and Y. Gong, *J. Mater. Chem. A*, 2016, **4**, 9977-9985.
- M. C. Liu, L. B. Kong, C. Lu, X. M. Li, Y. C. Luo and L. Kang, ACS Appl. Mater. Interfaces, 2012, 4, 4631-4636.
- 42. J.-J. Zhou, Q. Li, C. Chen, Y.-L. Li, K. Tao and L. Han, Chem. Eng. J., 2018, 350, 551-558.
- 43. D. Zhu, X. Sun, J. Yu, Q. Liu, J. Y. Liu, R. R. Chen, H. S. Zhang, R. M. Li, J. Yu and J. Wang, J. Colloid Interf. Sci., 2019, 557, 76-83.
- 44. J. H. Lin, H. Y. Liang, H. N. Jia, S. L. Chen, Y. F. Cai, J. L. Qi, J. Cao, W. D. Fei and J. C. Feng, *Inorg. Chem. Front.*, 2017, 4, 1575-1581.
- 45. K. W. Qiu, M. Lu, Y. S. Luo and X. W. Du, J. Mater. Chem. A, 2017, 5, 5820-5828.
- 46. Y. Wang, H. L. Wei, H. F. Lv, Z. X. Chen, J. J. Zhang, X. Y. Yan, L. Lee, Z. M. M. Wang and Y. L. Chueh, *ACS Nano*, 2019, **13**, 11235-11248.
- 47. S. Kandula, K. R. Shrestha, G. Rajeshkhanna, N. H. Kim and J. H. Lee, ACS Appl. Mater. Interfaces, 2019, 11, 11555-11567.
- 48. S. Chen, S. Cui, S. Chandrasekaran, C. Ke, Z. Li, P. Chen, C. Zhang and Y. Jiang, *Electrochim. Acta*, 2020, **341**, 135893.
- 49. R. BoopathiRaja, M. Parthibavarman and A. N. Begum, Mater. Res. Bull., 2020, 126, 110817.
- X. Xu, Y. Liu, P. Dong, P. M. Ajayan, J. Shen and M. Ye, J. Power Sources, 2018, 400, 96-103.