Supplementary Information for

Novel high-performance Ga₂Te₃ anode for Li-ion batteries

Young-Han Lee, a,c Yoon Hwa, *b and Cheol-Min Park* a,c

^a School of Materials Science and Engineering, Kumoh National Institute of Technology, 61
Daehak-ro, Gumi, Gyeongbuk 39177, Republic of Korea

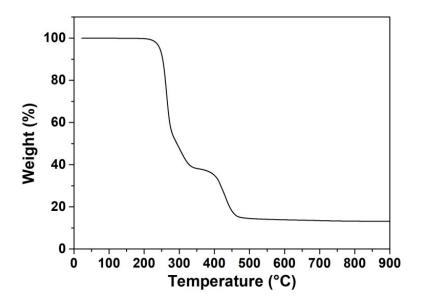
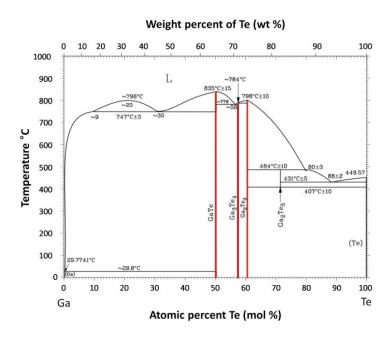
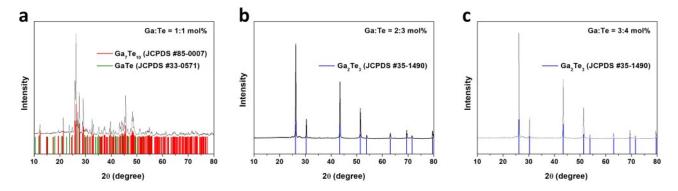
^b School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, AZ, 85281, USA

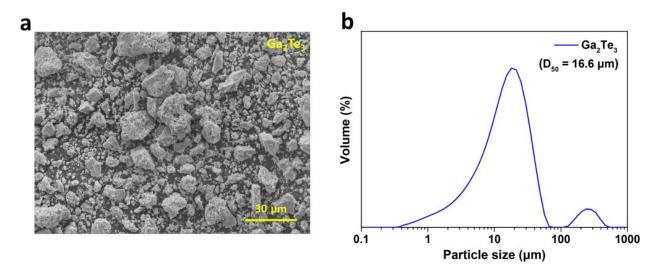
^c Department of Energy Engineering Convergence, Kumoh National Institute of Technology, Gumi, Gyeongbuk 39177, Republic of Korea

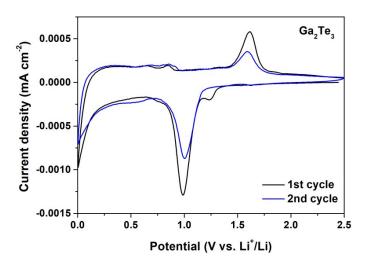
Tel.: +82 (054) 478-7746. Fax: +82 (054) 478-7769. E-mail: cmpark@kumoh.ac.kr (C.-M. Park)

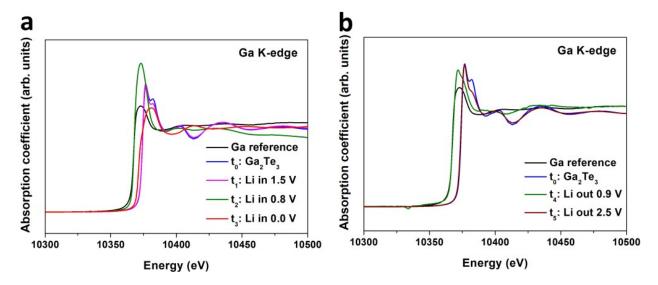
Tel.: +1 (602) 543-3490. E-mail: yoon.hwa@asu.edu (Y. Hwa)

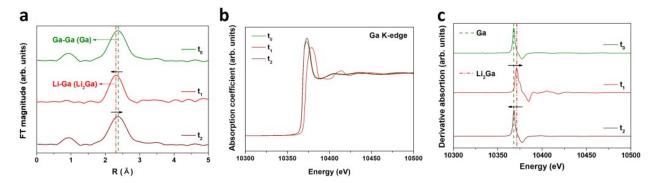
^{*}Corresponding authors.

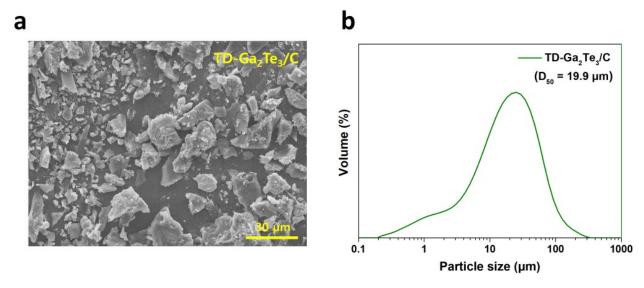




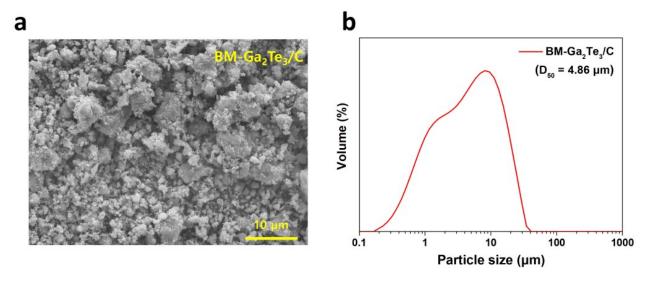

Figure S1. TGA data of pyrolyzed PVC, recorded between the ambient temperature and 900 °C.

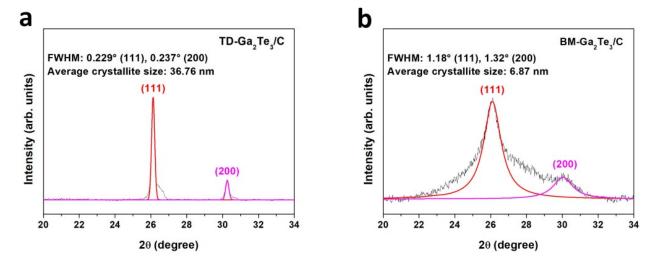

Figure S2. Binary phase diagram of Ga and Te, depicting thermodynamically stable GaTe, Ga₃Te₄, and Ga₂Te₃ phases at ambient temperature.

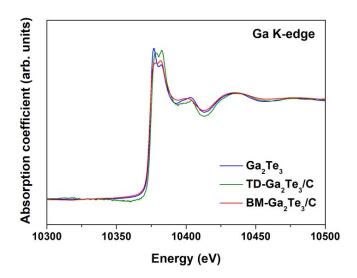

Figure S3. Synthesis of binary Ga-Te compounds and XRD results after heat-treatment of Ga and Te with different stoichiometric ratios (mol%): (a) 1:1; (b) 2:3; (c) 3:4.

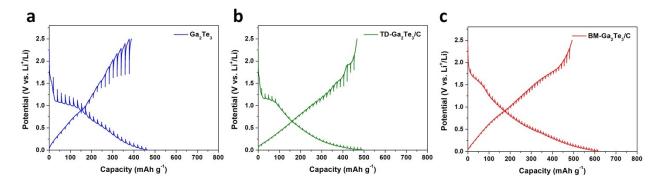

Figure S4. Characterization of synthesized Ga₂Te₃ powder: (a) SEM image; (b) result of particle size analysis.

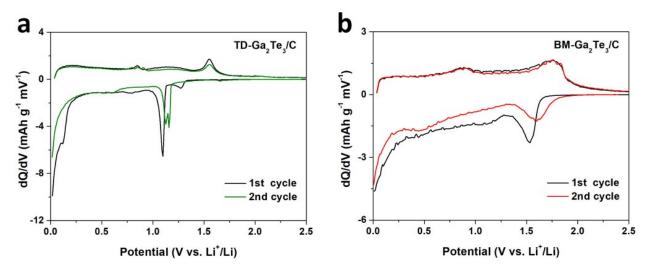

Figure S5. CV results for the first and second cycles of Ga₂Te₃ electrode for LIBs (voltage range: 0–2.5 V).

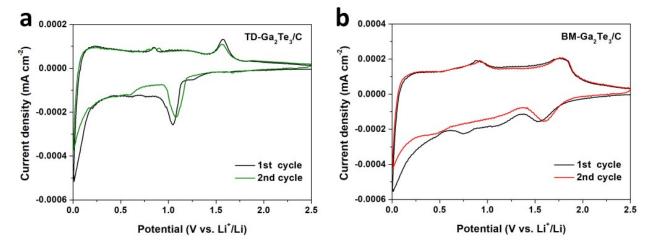

Figure S6. Reaction mechanism of Ga₂Te₃ anode with Li. Ga-K edge XANES spectra of Ga₂Te₃ anode during the first (a) lithiation and (b) delithiation processes.

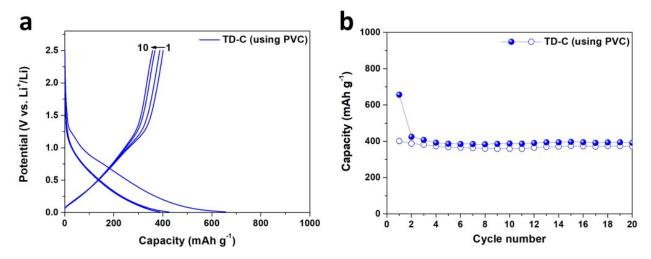

Figure S7. Reaction mechanism of Ga anode with Li. (a) *Ex situ* EXAFS results. (b) XANES spectra and (c) derivative XANES patterns of Ga anode collected at the selected potentials (t_0-t_2) .

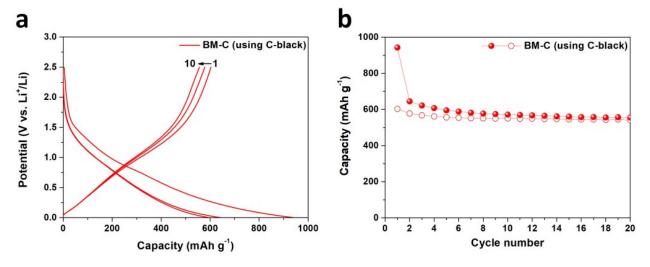

Figure S8. Characterization of synthesized TD-Ga₂Te₃/C powder. (a) SEM image. (b) Result of particle size analysis.

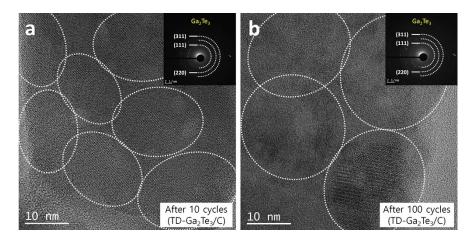

Figure S9. Characterization of synthesized BM-Ga₂Te₃/C powder. (a) SEM image. (b) Result of particle size analysis.


Figure S10. Crystallite size using XRD patterns of synthesized TD-Ga₂Te₃/C and BM-Ga₂Te₃/C composites. (a) Average crystallite size of Ga₂Te₃ in TD-Ga₂Te₃/C calculated using (111) and (200) planes of the XRD result. (b) Average crystallite size of Ga₂Te₃ in BM-Ga₂Te₃/C calculated using (111) and (200) planes of the XRD result.


Figure S11. Synthesis of TD-Ga₂Te₃/C and BM-Ga₂Te₃/C composites. Ga-K edge XANES spectra for Ga₂Te₃, TD-Ga₂Te₃/C, and BM-Ga₂Te₃/C composites.


Figure S12. GITT plots of the Ga₂Te₃, TD-Ga₂Te₃/C, and BM-Ga₂Te₃/C composite anodes after 2 cycle at 100 mA g⁻¹ (voltage range: 0–2.5 V). (a) GITT plot of the Ga₂Te₃ anode. (b) GITT plot of the TD-Ga₂Te₃/C anode. (c) GITT plot of the BM-Ga₂Te₃/C anode.


Figure S13. Differential capacity plots (DCPs) for TD-Ga₂Te₃/C and BM-Ga₂Te₃/C. (a) First and second DCPs of TD-Ga₂Te₃/C (voltage range: 0–2.5 V). (b) First and second DCPs of BM-Ga₂Te₃/C (voltage range: 0–2.5 V).


Figure S14. Cyclic voltammetry (CV) results for TD-Ga₂Te₃/C and BM-Ga₂Te₃/C. (a) First and second CV plots of TD-Ga₂Te₃/C (voltage range: 0–2.5 V). (b) First and second CV plots of BM-Ga₂Te₃/C (voltage range: 0–2.5 V).

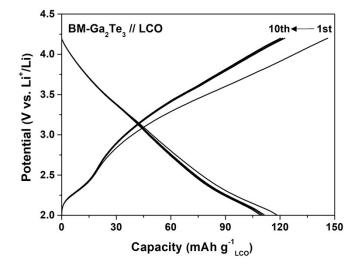

Figure S15. Electrochemical performance of thermally decomposed amorphous carbon produced by thermal decomposition (TD). (a) Voltage profile. (b) Cycling stability (current density: 100 mA g⁻¹).

Figure S16. Electrochemical performance of ball milling (BM) treated amorphous carbon. (a) Voltage profile. (b) Cycling stability (current density: 100 mA g⁻¹).

Figure S17. HRTEM images of TD-Ga₂Te₃/C composite anode after galvanostatic cycling. *Ex situ* HRTEM images of TD-Ga₂Te₃/C composite with SAEDs after (a) 10 and (b) 100 galvanostatic cycles.

Figure S18. Electrochemical performance of full cell comprising of BM-Ga₂Te₃/C anode and LCO cathode. Voltage profile of the full cell with BM-Ga₂Te₃/C anode and LCO cathode within the potential range of 2.0–4.2~V at 0.1~C (=14 mA g⁻¹).

Supplementary Table 1: Comparison of electrochemical performances of various Ga-based anodes for LIBs.

Material	Cycling performance		Rate capability		
	Current density (A g ⁻¹)	Reversible capacity after Xth cycles (mAh g ⁻¹)	Current density (A g ⁻¹)	Reversible capacity	Ref.
Ga-C NPs	0.1	400 (X=100)			14
Ga-In alloy	2.1	400 (X=500)	3.5	400	41
CuGa ₂	0.2	550 (X=60)	2	500	42
GaN NWs/graphite	0.1	486 (X=400)	10	75	43
Ga ₂ O ₃ NRs	0.1	300 (X=50)	1	243	44
Ga ₂ O ₃ /rGO	0.05	770 (X=40)	1	320	45
Ga ₂ O ₃ @C NPs	0.5	720 (X=200)	2	271	46
β -Ga ₂ O ₃ @G/C	0.2	517.9 (X=100)	0.5	376.7	47
α-Ga2O3@C@G	0.1	447.3 (X=50)	0.5	334.9	48
Ga_2S_3	0.1	400 (X=20)	1	550	49
SWCNT-GaS _x	0.12	575 (X=100)	0.6	514	50
GaS NS/SWCNT	1	300 (X=100)	2	530	51
GaSe NS/SWCNT	0.1	713 (X=5)	2	413	51
GaSe	0.1	760 (X=50)	1	600	52
Ga ₂ Se ₃ thin film	0.07	569.9 (X=100)	0.7	340	53
BM-Ga ₂ Te ₃ /C (This work)	0.1	574 (X=500)	0.6	528	-