Electronic Supplementary Information

An organometal halide perovskite photocathode integrated with a MoS₂ catalyst for efficient and stable photoelectrochemical water splitting

Hojoong Choi,^{‡a} Sehun Seo,^{‡a} Ju-Hyeon Kim,^{a,b} Jong-Hoon Lee,^{a,c} Seungkyu Kim,^a Guangxia Piao,^d Hyunwoong Park,^d Kwanghee Lee^{*a,b,e} and Sanghan Lee^{*a}

^a School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.

^b Heeger Center for Advanced Materials, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.

^c Department of Energy Resources, Huree University of Information and Communication Technology, Ulaanbaatar, 16061-0036, Mongolia.

^d School of Energy Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.

^e Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea.

‡ These authors contributed equally to this work.

*E-mail address: klee@gist.ac.kr (K. L.); sanghan@gist.ac.kr (S. L.)

Fig. S1 Current density–voltage (J-V) curve of OHP photovoltaic (PV) cell based on methylammonium lead triiodide (MAPbI₃) with L-proline amino acid in the forward and reverse scan directions.

Fig. S2 Photograph of the bare Ti foil and MoS_2/Ti foil.

Fig. S3 X-ray photoelectron spectroscopy (XPS) spectra of MoS_2/Ti foil. (a) XPS survey spectra and high-resolution XPS spectra of (b) Mo 3d and (c) S 2p regions of MoS_2/Ti foil.

Fig. S4 Field emission scanning electron microscopy (FESEM) image of bare Ti foil.

Fig. S5 Cyclic voltammetry (CV) curves of (a) 1000, (b) 3000, and (c) $6000 p \text{ MoS}_2/\text{Ti}$ foils at scan rates in the range of 40–200 mV s⁻¹. (d) Estimation of double layer capacitance (C_{dl}) for 1000, 3000, and 6000 $p \text{ MoS}_2/\text{Ti}$ foils.

Fig. S6 Photograph of three-electrode configuration with MoS₂/Ti foil/OHP, saturated calomel electrode (SCE), and graphite rod as working, reference, and counter electrode, respectively.

Fig. S7 Repetitive 100 cycles of LSV curves of the MoS_2/Ti foil/OHP photocathode.

Fig. S8 LSV curves of a total 10 MoS_2/Ti foil/OHP photocathodes.

Fig. S9 Incident photon-to-electron conversion efficiency (IPCE) spectra of bare Ti foil/OHP and MoS_2/Ti foil/OHP photocathodes at a potential of a 0.4 V versus reversible hydrogen electrode (vs. RHE).

Fig. S10 Band alignment of OHP photocathodes with or without the MoS_2 HER catalyst.

Fig. S11 Nyquist plots of bare Ti foil/OHP and MoS_2/Ti foil/OHP photocathodes measured at 0.7 V vs. RHE under illumination. The inset shows the equivalent circuit used to fit the Nyquist plots.

Fig. S12 Open-circuit potential (OCP) of (a) bare Ti foi/OHP and (b) MoS_2/Ti foil/OHP photocathodes in the dark and under illumination.

Fig. S13 (a) LSV curve and (b) corresponding half-cell solar-to-hydrogen conversion efficiency (HC-STH) of Pt/Ti foil/OHP photocathode.

Fig. S14 Photographs of epoxy resin sealed MoS_2/Ti foil/OHP photocathode. (a) Before and (b) after the measurement of PEC stability.

Table S1 Photoelectrochemical	(PEC)	performance	of	previously	reported	state-of-the-art
photocathodes.						

Photocathode	Photocurrent density at 0 V vs. RHE (mA cm ⁻²)	Onset potential (V vs. RHE)	HC-STH (%)	Potential at maximum HC-STH (V vs. RHE)	Reference		
Pt-containing state-of-the-art photocathodes							
Pt/CdS/CIGS	-28	0.75	12.5	0.53	1		
Pt/TiO ₂ /n ⁺ p-Si	-20.3	0.64	8.1	0.43	2		
Pt/Mo/Ti/CdS/(ZnSe) _{0.85} (CIGS) _{0.15}	-12	0.89	3.6	0.45	3		
Pt/CdS/(CuInS ₂) _{0.81} (ZnS) _{0.19}	-16.7	0.84	5.6	0.45	4		
Pt/TiO ₂ /CdS/SnS/Au	-19	0.25	0.7	0.08	5		
Pt/TiO _x /BHJ/CuO _x	-7.3	0.63	1.5	0.3	6		
Pt/TiO2/CdS/Sb2Se3/Au	-30	0.5	3.4	0.26	7		
Pt-free state-of-the-art photocathodes							
CuO/CuBi ₂ O ₄	–0.9 (at 0.1 V vs. RHE)	1	0.19	0.3	8		
Ni-Mo/CdS/CIGS	-25	0.5	2.8	0.24	9		
CoP ₂ /TiO ₂ /AZO/p-Si	-16.7	0.48	2.22	0.22	10		
MoS _x /CdS/CZTS	-18	0.6	3	0.3	11		
MoS ₂ /Ti foil/In-Ga eutectic alloy/MAPbI ₃ with L-Proline	-20.6	1.02	11.07	0.63	This study		

Photocathode	Photocurrent density at 0 V vs. RHE (mA cm ⁻²)	Onset potential (V vs. RHE)	HC-STH (%)	ABPE (%)	Reference
MoS ₂ /p-Si	-24.6	0.17	-	0.86	12
CoMoS _x /p-Si	-17.2	0.19	_	0.72	13
MoS ₂ /p-GaN	-2.15	0.8	_	3.18	14
Rh-P/MoS ₂ /TiO ₂ /p-Si	-24.1	0.43	_	2.12	15
$MoS_x/In_2S_3/Sb_2Se_3$	-27	0.89	2.6	2.6	16
$MoS_2/TiO_2/n^+p\text{-}Si$	-33.7	0.46	-	4.9	17
Pt/Ni-MoS _x /CuInS ₂	-15.5	0.5	1.48	-	18
MoS _x /CdS/CZTS	-18	0.6	3	-	11
$MoS_2/Ni_3S_2/Ni/n^+np^+-Si$	-41.6	0.54	_	11.2	19
MoS ₂ /Ti foil/In-Ga eutectic alloy/MAPbI ₃ with L-Proline	-20.6	1.02	11.07	11.75	This study

Table S2 Photoelectrochemical (PEC) performance of previously reported state-of-the-artphotocathodes using the MoS_2 HER catalyst.

References

- 1 H. Kobayashi, N. Sato, M. Orita, Y. Kuang, H. Kaneko, T. Minegishi, T. Yamada and K. Domen, *Energy Environ. Sci.*, 2018, **11**, 3003–3009.
- 2 C. Ros, T. Andreu, M. D. Herna'ndez-Alonso, G. PenelasPe'rez, J. Arbiol and J. R. Morante, *ACS Appl. Mater. Interfaces*, 2017, **9**, 17932–17941.
- 3 H. Kaneko, T. Minegishi, M. Nakabayashi, N. Shibata and K. Domen, *Angew. Chem.*, *Int. Ed.*, 2016, **128**, 15555–15559.
- J. Zhao, T. Minegishi, H. Kaneko, G. Ma, M. Zhong, M. Nakabayashi, T. Hisatomi, M. Katayama, N. Shibata, T. Yamada and K. Domen, *Chem. Commun.*, 2019, **55**, 470–473.
- 5 H. Lee, W. Yang, J. Tan, J. Park, S. G. Shim, Y. S. Park, J. W. Yun, K. M. Kim and J. Moon, *ACS Appl. Mater. Interfaces*, 2020, **12**, 15155–15166.
- 6 W. Shi, W. Yu, D. Li, D. Zhang, W. Fan, J. Shi and C. Li, *Chem. Mater.*, 2019, **31**, 1928–1935.
- W. Yang, J. H. Kim, O. S. Hutter, L. J. Phillips, J. Tan, J. Park, H. Lee, J. D. Major, J. S. Lee and J. Moon, *Nat. Commun.*, 2020, **11**, 861.
- 8 S. Pulipaka, N. Boni, G. Ummethala and P. Meduri, J. Catal., 2020, 387, 17–27.
- 9 M. Baek, M. Zafar, S. Kim, D. H. Kim, C. W. Jeon, J. Lee and K. Yong, *ChemSusChem*, 2018, **11**, 3679–3688.
- 10 H. Li, P. Wen, D. S. Itanze, M. W. Kim, S. Adhikari, C. Lu, L. Jiang, Y. Qiu and S. M. Geyer, *Adv. Mater.*, 2019, **31**, 1900813.
- 11 K. Feng, D. Huang, L. Li, K. Wang, J. Li, T. Harada, S. Ikeda and F. Jiang, *Appl. Catal.*, *B*, 2020, **268**, 118438.
- 12 K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y.-S. Shim, D. H. Kim, T. Kim, W. Sohn, J.-M. Jeon, C.-H. Lee, K. T. Nam, S. Han, S. Y. Kim and H. W. Jang, *Energy Environ. Sci.*, 2016, 9, 2240–2248.
- 13 C.-J. Chen, K.-C. Yang, C.-W. Liu, Y.-R. Lu, C.-L. Dong, D.-H. Wei, S.-F. Hu and R.-S. Liu, *Nano Energy*, 2017, **32**, 422–432.
- 14 D. Ghosh, P. Devi and P. Kumar, *ACS Appl. Mater. Interfaces*, 2020, **12**, 13797–13804.
- 15 Z. Chen, Y. Li, L. Wang, Y. Bu and J.-P. Ao, J. Mater. Chem. A, 2021, 9, 9157–9164.
- 16 C. Liu, T. Liu, Y. Li, Z. Zhao, D. Zhou, W. Li, Y. Zhao, H. Yang, L. Sun, F. Li and Z. Li, *J. Mater. Chem. A*, 2020, **8**, 23385–23394.
- W. Xun, Y. Wang, R. Fan, Q. Mu, S. Ju, Y. Peng and M. Shen, *ACS Energy Lett.*, 2021, 6, 267–276.
- 18 J. Zhao, T. Minegishi, G. Ma, M. Zhong, T. Hisatomi, M. Katayama, T. Yamada and K. Domen, *Sustainable Energy Fuels*, 2020, **4**, 1607–1611.
- 19 R. Fan, J. Zhou, W. Xun, S. Cheng, S. Vanka, T. Cai, S. Ju, Z. Mi and M. Shen, *Nano Energy*, 2020, **71**, 104631.