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 The classic two-component mathematical models used in this work to calculate the dielectric 
constant of the nanocomposites are listed as follows: 
 
Wiener bounds model:1 

= +        (1) 
Modified Rother−Lichtenecker model:2–4 

ln = ln + (1 − ) ln       (2) 
Sillars model:5 

= 1 + ( )       (3) 

Maxwell-Garnett model:6–8 
= 1 + ( )

( )      (4) 

Yamada model:9,10 
= 1 + ( )

( )( )       (5) 

Bruggeman self-consistent effective medium approximation model:11,12 

/ = ( )( )
/        (6) 

Jaysundere-Smith model:13 

eff =       (7) 

where εeff, εf and εm are effective dielectric constant of nanocomposites, filler and polymer matrix, 
respectively; φm and φf are volume fractions of polymer matrix and fillers, η is a shaper factor. 
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 The recently developed three-component interphase dielectric model used in this work to 
calculate the dieelctric constant of the nanocomposites is briefly descibed below: 
 

= + +      (8) 
where Kc, Km, Kf and Ki are the K values of composite, polymer matrix, filler and interface, 
respectively; φm, φf and φi are volume fractions of polymer matrix, filler and interface, respectively; 
β is a filler dimension factor, for spherical fillers, β=1/3.  
 φi can be determined from the multi-core model and written as: 

 = 1 + − 1 (1 − ), =     (9) 
where d is the diameter of filler and t is the thickness of interface, f is a general interphase overlap 
probability function to evaluate the degrees of interface overlapping. 
 Ki can be written as: 

= + − + ( )      (10) 
where ϕ(φf) represents the degree of extra enhancement of K in interface, and can be written as: 

( ) = 1 + ( / )       (11) 
where A=(Kf+qKm)Km1/2, φ0 is the filling ratio where maximum Kc is achieved, p and q are matrix-
determined system factors (for dipolar linear polymer, p=1, q=3). 
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Table S1. Summary of several dielectric parameters and predicted dielectric constants of PMMA-
based nanocomposites with QDs nanofillers.  

Polymer Filler d 
(nm) Km Kf φf Kc (measured) 

Kc (predicted) Deviation 

PMMA QDs 7.6 3.5 10 

0 3.5 3.5 0% 
0.002 4 4.4 10.0% 
0.004 4.6 5.1 10.8% 
0.006 5.3 5.6 5.6% 
0.008 5.9 5.8 −1.7% 
0.010 5.4 5.5 1.85% 
0.012 5 5 0% 
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Fig. S1. TEM images of QDs. Sacle bars: a) 50 nm, b) 20 nm, c) 5 nm and d) 2 nm. 
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Fig. S2. XRD pattern of QDs. According to Bragg equation: 

λ=2d sinθ      (12) 
where λ is the wavelength of X-ray (Cu Kα), 0.154056 nm, d is the interplanar spacing and θ is the 
diffraction angel. For the (111) plane, d = 0.321 nm, which is in good agreement of HRTEM result. 
  

20 25 30 35 40 45 50 55 60

Inte
nsi

ty (
a.u

.)

2 Theta (°)

111

220 311



     

7 
 

  
Fig. S3. FT-IR spectum of APP-functioned QDs. The peaks at 2950~2800 cm-1, 1550 cm-1, 1400 cm-

1, and 1030 cm-1 are corresponding to C-H stretching, N-H bending, O-H bending and C-N stretching 
of APP, respectively, proving that the surface structure of QDs has been modified with APP ligands. 
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Fig. S4. DFT calculations of interaction energy, E(int), between PMMA and APP. Spheres colored by 
grey, white, cyan, red and blue represent carbon, hydrogen, fluoride, oxygen and sulfur atoms, 
respectively. E(int) is obtained as the difference between the energy of relaxed PMMA/APP complex 
and the original PMMA and APP, given as: E(int)=E(PMMA/APP)-E(PMMA)-E(APP). 
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  Fig. S5. a) Cross-section SEM image, b) TEM image and c, d) optical images of PMMA/QD 
nanocomposite films.  
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Fig. S6. Dielectric loss spectra of PMMA and PMMA/QD nanocomposites with frequency ranging 
from 100 Hz to 2 MHz at room temperature. 
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Fig. S7. DSC curves of pure PMMA and PMMA nanocomposite with 0.82 vol% QDs.  
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Fig. S8. XRD pateterns of pure PMMA and PMMA nanocomposite with 0.82 vol% QDs.  
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Fig. S9. Leakage current densities of PMMA and nanocomposites at 200 MV m-1 as a function QDs 
contents. The conduction loss in the nanocomposites is much suppressed than that in pure PMMA 
due to the numerous deep traps formed at the surface of QDs nanofillers (or the polymer-filler 
interfaces), which together with the enhanced mechanical strength, contributes to the largely 
improved Eb.14 
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Fig. S10. Maximum and remnant electric displacement ((Dmax and Dr) of PMMA and PMMA/QD 
nanocomposites with various QDs contents. 
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