Supporting Information

Methods

Chemicals: Chloroauric Acid $\left[\mathrm{HAuCl}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}\right]$, ammonium chloride and acetone were purchased from Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). Dicyandiamide ($\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}_{4}$) and was purchased from Alfa Aesar. $\mathrm{Ar} / \mathrm{H}_{2}(5 \%)$ was purchased from Linde Gas. The water used in all experiments was ultrapure ($18.2 \mathrm{M} \Omega$). All chemicals were used as received without further purification.

Syntheis of $\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ nanosheets: 1 g dicyandiamide and $10 \mathrm{~g} \mathrm{NH} \mathrm{H}_{4} \mathrm{Cl}$ were put together into a 50 mL ceramic crucible, then shake to mix as evenly as possible. The mixture was heated under air at 2.3 ${ }^{\circ} \mathrm{C} \mathrm{min}^{-1}(4 \mathrm{~h})$ up to $550{ }^{\circ} \mathrm{C}$ and then treated at $550{ }^{\circ} \mathrm{C}$ for 2 h . The yellow and fluffy powder is obtained after the temperature dropped.

Synthesis of $\mathrm{Au} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ nanosheets

The $A u_{1} / g-C_{3} N_{4}$ nanosheets were prepared based on previously reported method ${ }^{1,2}$. The HAuCl_{4} ($0.1 \mathrm{~g} \mathrm{~mL}^{-1}$) was added into the $\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ aqueous dispersion (200 $\mathrm{mg} \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ dispersed in 50 mL of distilled water) and keeping stirring at room temperature for 12 h . The resulting product was washed with distilled water several times, and was then dried in vacuum at $50^{\circ} \mathrm{C}$ overnight to give $\mathrm{HAuCl} 4 / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ sample, followed by annealing at $110^{\circ} \mathrm{C}$ in $\mathrm{H}_{2} / \mathrm{Ar}(5 \%)$ atmosphere for 2 h to give $\mathrm{Au}_{1} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ sample. When the temperature is higher than $130{ }^{\circ} \mathrm{C}$, the $A u_{1+N P s}$ samples was obtained

Synthesis of $\mathrm{Au} \mathrm{NPs} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ nanosheets

The Au nanoparticles were prepared based on previously reported method ${ }^{3,4}$. In a typical preparation of Au nanoparticles, $0.1 \mathrm{~g} / \mathrm{mL}$ aqueous HAuCl_{4} (200 ll) was dissolved in OAm (10 mL)
at $60^{\circ} \mathrm{C}$ under vigorous stirring for 10 min . Then, a solution of borane-tert-butylamine (100 mg , $1.15 \mathrm{mmol})$ in $\mathrm{OAm}(1 \mathrm{~mL})$ was added quickly into the previous solution, and the reaction mixture immediately turned red. After 1 min , the flask was heated to $80^{\circ} \mathrm{C}$ for a further 1 hour. After cooling to room temperature, the solution was washed with ethanol (40 mL) and then dispersed in cyclohexane for future use. For the preparation of $\mathrm{Au} N P s / g-\mathrm{C}_{3} \mathrm{~N}_{4}$ catalyst, $\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ nanosheets are added into the dispersions of Au at a loading of 0.3 wt . \% (based on Au), and the mixtures are stirred overnight. The catalysts are obtained through centrifugation and drying under vacuum. In order to remove the surfactant from the surface of gold nanoparticles, we calcined at $400^{\circ} \mathrm{C}$ for 2 hours in an argon atmosphere tubular furnace.

Characterization

The crystalline structure and phase purity were determined by Rigaku RU-200b X-ray powder diffractometer with Cu Ka radiation ($\quad=1.5418 \AA \AA$). The size and morphology of as-synthesized samples were determined by using Hitachi-7700 transmission electron microscope working at 100 kV. The high-angle annular dark-field scanning TEM (HAADF-STEM) were operated at 200 kV by a JEOL-ARM200F. The composition of the product was measured by the inductively coupled plasmaatomic emission spectrometry and energy dispersive X-ray spectrometer.

Photoemission spectroscopy experiments (XPS) were performed on a ULVAC PHI Quantera microprobe in Beijing, China. The end station is comprised of four ultrahigh vacuum (UHV) chambers including analysis chamber, preparation chamber, molecular beam epitaxy (MBE) chamber, and a radial distribution chamber (RDC). The base pressures are $7 \times 10^{-11}, 1 \times 10^{-10}, 5 \times 10^{-}$ ${ }^{10}$ and 2×10^{-11} mbar, respectively. In addition, a quick sample load-lock system is attached to the RDC. The analysis chamber is equipped with a VG Scienta R4000 analyzer and a monochromatic AI

Ka X-ray source. The sample was annealed at the preparation chamber and then transferred to the analysis chamber for characterization. The core-level spectra were measured using a monochromatic Al Ka X-ray source. For the core-level spectra, the binding energies were calibrated using the C 1s feature located at 284.6 eV as the reference.

X-ray absorption data collection and analysis

The Au L3-edge X-ray absorption spectra were collected at room temperature in fluorescence mode at beamline 1W1B of Beijing Synchrotron Radiation Facility (BSRF) using a Si (111) doublecrystal monochromator. The storage rings of BSRF were operated at 2.5 GeV with a maximum current of 250 mA in decay mode. The energy was calibrated using Au foil, while the incident and fluorescence x-ray intensities were monitored by using standard $25 \% \mathrm{Ar}$ and $75 \% \mathrm{~N}_{2}$-filled ion

$$
\chi(k)=\sum_{j} \frac{N_{j} S_{o}^{2} F_{j}(k)}{k R_{j}^{2}} \exp \left[-2 k^{2} \sigma_{j}^{2}\right] \exp \left[\frac{-2 R_{j}}{\lambda(k)}\right] \sin \left[2 k R_{j}+\phi_{j}(k)\right]
$$

chamber and Ar-filled Lytle-type detector, respectively. A detuning of about 20\% by misaligning the silicon crystals was also performed to suppress the high harmonic content. The samples were pelletized as disks of 13 mm diameter with 1 mm thickness before measurements.

The XAFS raw data were background-subtracted, normalized, and Fourier transformed by the standard procedures with the ATHENA program. To obtain the quantitative structural parameters around the absorbing Au atoms, least-squares curve fitting analysis of the EXAFS $\chi(k)$ data was performed using the ARTEMIS package, with the theoretical scattering amplitudes, phase shifts and the photoelectron mean free path for all paths calculated by FEFF6.

The following EXAFS equation was used:
where $S_{0}{ }^{2}$ is the amplitude reduction factor, $F_{j}(k)$ is the effective curved-wave backscattering amplitude, N_{j} is the number of neighbors in the $j^{\text {th }}$ atomic shell, R_{j} is the distance between the X-
ray absorbing central atom and the atoms in the $j^{\text {th }}$ atomic shell (backscatterer), λ is the mean free path in $\AA, \varphi_{j}(k)$ is the phase shift (including the phase shift for each shell and the total central atom phase shift), σ_{j} is the Debye-Waller parameter of the $j^{\text {th }}$ atomic shell (variation of distances around the average R_{j}). . In present work, the variable parameters that are determined by using the EXAFS equation to fit the experimental data include N, R, and the EXAFS Debye-Waller factor (σ^{2}). $S_{0}{ }^{2}$ was determined in the fit of Au standard to be 0.85, and used as fixed value in the rest of the EXAFS models. For Au L L_{3}-edge, E_{0} was defined as 11921 eV for the scale conversion from the photo energy (eV) to the wave vector $\left(\mathrm{k}, \AA^{-1}\right)$. All fits were performed in the R space with k-weight of 3 . The EXAFS R-factor $\left(R_{f}\right)$ that measures the percentage misfit of the theory to the data was used to evaluate the goodness of the fit.

Procedure for hydrosilylation of phenylacetylene: In a typical reaction, a 10 mL Schlenk tube was charged with 0.5 mmol phenylacetylene, 0.75 mmol silane, $60 \mathrm{mg} \mathrm{Au} 1 / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ catalyst and 5 mL solvent under nitrogen atmosphere. After stirring the result mixture under specific temperature and time, the catalyst was removed through centrifugation. GC-FID (SP-6890) and GC-MS was used to determine the conversion and selectivity. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3} on a Bruker Avance 500 MHz Spectrometer at 298 K.

Procedure for recovering and reusing the catalyst: The reaction mixture was centrifuged under $9900 \mathrm{r} / \mathrm{min}$ after the reaction was over. Then the supernatant was removed and the residue was washed with acetone $(3 \times 5 \mathrm{~mL})$. The recovered Au catalyst was used directly for the next run of the model reaction.

Figure S1. The representative TEM image of $g-C_{3} N_{4}$ nanosheet.

Figure S2. The representative SEM image of $\mathrm{Au}_{1} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ nanosheet.

Figure S3. The representative TEM image of $\mathrm{Au} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ obtained at $130^{\circ} \mathrm{C}$.

Figure S4. The representative TEM image of Au nanoparticles

Figure S5. a) The representative TEM image of $\mathrm{Au} \mathrm{NPs} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ through loading Au nanoparticles on $\mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ nanosheets and calcined at $400^{\circ} \mathrm{C}$ in air; b) Energy dispersive spectroscopy mapping of $\mathrm{Au} \mathrm{NPs} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ nanosheet; c) Interfringe distance measured by a single Au nanoparticle

Figure S6. The Au $4 f$ spectra of $\mathrm{Au} \mathrm{NPs} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ nanosheet.

Figure S7. The Au $4 f$ spectra of $\mathrm{Au} \mathrm{NPs} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}-130$ obtained at $130^{\circ} \mathrm{C}$.

Figure S8. The C1s spectra (a) and N 1 s spectra (b) of $\mathrm{Au} \mathrm{u}_{1} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ nanosheet.

Figure S9. The C1s spectra (a) and N1s spectra (b) of $\mathrm{Au} \mathrm{NPs} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}$ nanosheet.

Figure S10. The C1s spectra (a) and N1s spectra (b) of $\mathrm{Au} \mathrm{NPs} / \mathrm{g}-\mathrm{C}_{3} \mathrm{~N}_{4}-130$ nanosheet.

References
(1) Chen, Z.; Chen, Y.; Chao, S.; Dong, X.; Chen, W.; Luo, J.; Liu, C.; Wang, D.; Chen, C.; Li, W.; Li, J.; Li, Y. ACS Catalysis 2020, 10, 1865.
(2) Chen, Z.; Zhang, Q.; Chen, W.; Dong, J.; Yao, H.; Zhang, X.; Tong, X.; Wang, D.; Peng, Q.; Chen, C.; He, W.; Li, Y. Advanced Materials 2018, 30, 1704720.
(3) Chen, Z.; Shen, R.; Chen, C.; Li, J.; Li, Y. Chemical Communications 2018, 54, 13155.
(4) Chen, Z.; Wang, S.; Lian, C.; Liu, Y.; Wang, D.; Chen, C.; Peng, Q.; Li, Y. Chemistryan Asian Journal 2016, 11, 351.

Analytical data for vinylsilanes

(E)-Triethyl(styryl)silane (3aa). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.55(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.42 (t, J=7.6 $\mathrm{Hz}, 2 \mathrm{H}$), $7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.55(\mathrm{~d}, J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{t}, J=7.8 \mathrm{~Hz}$, 9 H), 0.79 ($\mathrm{q}, \mathrm{J}=8 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.91,138.59,128.54,127.93,126.37$, 125.95, 7.46, 3.59.
(E)-Triethyl(4-methylstyryl)silane (3ba). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15$ (d, J = 7.6 Hz, 2H), $6.93(\mathrm{~d}, J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=7.8 \mathrm{~Hz}$, 9 H), 0.67 ($\mathrm{q}, \mathrm{J}=8.0 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.69,137.76,135.87,129.20,126.24$, 124.55, 21.23, 7.44, 3.56.
(E)-Triethyl(3-methylstyryl)silane (3ca). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, \mathrm{~J}=$ $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H})$, 0.74 ($q, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}): $\delta 145.00,138.52,138.07,128.72,128.45$, 127.04, 125.63, 123.57, 21.43, 7.46, 3.58.
(E)-Triethyl(4-methoxystyryl)silane (3da). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.43(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.91$ (d, J = 8..4 Hz, 2H), $6.87(d, J=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~d}, \mathrm{~J}=19.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, 9 H), 0.70 ($\mathrm{q}, \mathrm{J}=7.9 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 159.54,144.24,131.60,127.56,123.02$, 113.90, 55.32, 7.47, 3.62.
(E)-3-(2-(triethylsilyl)vinyl)aniline (3ea). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.16(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-$ $6.82(\mathrm{~m}, \mathrm{~J}=23.7,13.4 \mathrm{~Hz}, 3 \mathrm{H}), 6.63(\mathrm{dd}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~d}, \mathrm{~J}=19.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 1.03$ (t, J = 7.9 Hz, 9H), $0.70(q, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.60,144.99,139.67$, 129.43, 125.64, 117.17, 114.93, 112.75, 7.44, 3.57.
(E)-triethyl(4-(trifluoromethyl)styryl)silane (3fa). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}$, 2 H), 7.53 (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=19.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~d}, J=19.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.00(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $9 \mathrm{H}), 0.69(\mathrm{q}, \mathrm{J}=7.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.28,141.76,129.74,126.46,125.44$, 7.36, 3.41.
(E)-triethyl(2-fluorostyryl)silane (3ga). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60(\mathrm{dt}, J=8.6,5.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.28-7.22(\mathrm{~m}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.03(\mathrm{~m}, J=19.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.52(\mathrm{~d}, J=19.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{t}, J=7.9$ $\mathrm{Hz}, 9 \mathrm{H}), 0.71(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.42,158.94,136.47,129.14,126.68$, 124.00, 115.80, 115.58, 7.39, 3.48.
(E)-(4-chlorostyryl)triethylsilane (3ha). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=19.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, \mathrm{~J}=19.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.03(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.70(\mathrm{q}, \mathrm{J}=$ $7.9 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 143.49,137.03,133.54,128.66,127.54,126.95,7.42$, 3.52.
(E)-Triethyl(2-(naphthalene-2-yl)vinyl)silane (3ia). ${ }^{1} \mathrm{H} \mathrm{NMR} \mathrm{(400} \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.86-7.80$ ($\mathrm{d}, \mathrm{J}=8.4$ $\mathrm{Hz}, 4 \mathrm{H}$), $7.74(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=$ $18.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.76(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{CNMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 144.91$, $136.02,133.69,133.33,128.21,128.15,127.71,126.58,126.51,126.25,125.96,123.37,7.52,3.64$. (E)-(4-Phenylbutyl-1-enyl)triethylsilane (3ja). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.16-$ $7.22(\mathrm{~m}, 3 \mathrm{H}), 6.14(\mathrm{dt}, J=18.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.51-$ $2.45(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 0.60(\mathrm{q}, \mathrm{J}=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 147.49$, 142.02, 128.51, 128.39, 128.35, 128.27, 126.59, 125.75, 38.82, 35.41, 7.40, 3.54.
(E)-Triethyl(hex-1-enyl)silane (3ka). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.05$ (dt, J = 18.8, $6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 5.55 (d, J=18.8 Hz, 1H), 2.16-2.11 (m, 2H), 1.34-1.28 (m, 4H), 1.00-0.89 (m, 12H), $0.56(q, J=8.0 \mathrm{~Hz}$, 6 H); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.84,125.48,37.03,31.37,22.53,14.06,7.37,3.56$.
(E)-Triethyl(decyl-1-enyl)silane (3la). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.04$ ($\mathrm{dt}, J=18.8,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.56(\mathrm{~d}, \mathrm{~J}=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.28(\mathrm{~m}, 12 \mathrm{H}), 0.99-0.87(\mathrm{~m}, 12 \mathrm{H}), 0.56(\mathrm{q}, J=8.0$ $\mathrm{Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 148.84,125.48,37.08,31.91,29.48,29.31,28.85,22.70$, 14.09, 7.35, 3.57.
(E)-(5-Chloropent-1-enyl)triethylsilane (3ma). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.99$ ($\mathrm{dt}, \mathrm{J}=18.8,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.62(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{t}, \mathrm{J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.31-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 2 \mathrm{H}), 0.92$ ($\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 9 \mathrm{H}$), $0.54(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.15,127.65,44.42,33.96$, 31.61, 7.37, 3.46.

JII

$\stackrel{7}{2}$

$\begin{array}{lllllllll}60 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 \\ 81\end{array}$

콬ํํํํํํํํํํ룰

	$\begin{gathered} \text { T } \\ \underset{\sim}{\circ} \end{gathered}$	
11		111

$\stackrel{y}{\circ}$

