Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Electronic Supporting Information

Perovskite-type Stabilizer for Efficient and Stable Formamidinium-based Lead Iodide Perovskite Solar Cells

Lina Shen[#], Peiquan Song[#], Lingfang Zheng[#], Kaikai Liu, Kebin Lin, Wanjia Tian,

Yujie Luo, Chengbo Tian, Liqiang Xie*, and Zhanhua Wei*

Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China.

E-mail: lqxie@hqu.edu.cn, weizhanhua@hqu.edu.cn

[#] These authors contributed equally to this work.

Figure S1. FTIR spectra of PbI₂ films with CsPbBr₃. The doping percentage of CsPbBr₃ is defined by the molar percentage of lead.

Figure S2. Top-view SEM images of PbI_2 films a) w/o, b) with 1%, c) with 2%, d) with 3%, and e) with 5% CsPbBr₃. Scale bar in a) b) c) d) e) represents 500 nm.

Figure S3. a) XRD patterns of FAPbI₃-based perovskite films stabilized with CsPbBr₃. b)Evolution of XRD peak intensity at around 12.7 and 14° of the perovskite films w/o and with CsPbBr₃. The samples are deposited on ITO.

Figure S4. a) UV-vis absorption spectra of FAPbI₃-based perovskite films w/o and with CsPbBr₃. b) Tuac plot of perovskite films with CsPbBr₃.

Figure S5. Steady-state PL spectra of FAPbI₃-based perovskite films w/o and with CsPbBr₃.

Figure S6. TRPL decay of FAPbI₃-based perovskite films with CsPbBr₃.

Figure S7. SCLC results of the FAPbI₃-based devices w/o and with CsPbBr₃. To calculate the trap density, the thickness of both perovskites is determined to be 680 nm by cross-sectional SEM and the employed dielectric constant ε is 46.9 (ref. 21).

Figure S8. Top-view SEM images of FAPbI₃-based perovskite films a) with 1%, b) with 3%, c) with 5% CsPbBr₃. Scale bar in a) b) c) represents 1 μ m.

Figure S9. Grain-size distribution of the FAPbI₃-based perovskite films w/o and with 2% CsPbBr₃.

Figure S10. Cross-sectional SEM images of FAPbI₃-based PSCs a) with 1%, b) with 3%, c) with 5% CsPbBr₃. Scale bar in a) b) c) represents 500 nm.

Figure S11. J-V curves of FAPbI₃-based PSCs with CsPbBr₃.

Figure S12. IPCE spectra and integrated J_{SC} of FAPbI₃-based PSCs w/o and with CsPbBr₃.

Figure S13. Statistics of photovoltaic metrics of 15 individual FAPbI₃-based PSCs w/o and with CsPbBr₃. a) V_{OC} , b) J_{SC} , c) FF, and d) PCE.

Figure S14. Photovoltaic performance of the FAPbI₃-based PSCs w/o and with 2% CsPbBr₃ optimized with surface passivation of NMAI. a) J-V curves. Statistics of b) PCE, c) V_{OC} , d) J_{SC} , and e) FF.

Figure S15. The dependency of J_{SC} versus illumination intensity of FAPbI₃-based PSCs w/o and with 2% CsPbBr₃.

Figure S16. EIS of FAPbI₃-based PSCs w/o and with 2% CsPbBr₃. The applied bias was 1 V (close to the open circuit) and the illumination intensity was 10 mW cm⁻² (0.1 sun). These testing conditions were employed to emphasize the recombination characteristics.

Figure S17. Photovoltaic metrics statistics of FAPbI₃-based PSCs stabilized with perovskite-type stabilizer (CsPbBr₃), precursor-type stabilizers (CsI, PbBr₂, or CsBr) and corresponding double precursor-type stabilizers (PbBr₂+CsBr). The ralative content of stabilizers are fixed at 2%. a) PCE, b) J_{SC} , c) V_{OC} , and d) FF.

Devices	w/o CsPbBr ₃	with 1%	with 2%	with 3%	with 5%
		$CsPbBr_3$	CsPbBr ₃	CsPbBr ₃	CsPbBr ₃
τ ₁ (ns)	17.8	27.5	61.3	39.5	34
<i>t</i> ₂ (ns)	326.6	359.8	371.7	358	344
A ₁	32.8	7.6	1.0	2.9	4.8
A ₂	0.4	0.3	0.6	0.6	0.3

Table S1. Fitted parameters of TRPL results of FAPbI₃-based perovskite films w/o and with CsPbBr₃.

Table S2. Photovoltaic parameters of FAPbI3-based PSCs with CsPbBr3.

Devices	J _{SC} [mA cm ⁻²]	V _{oc} [V]	FF [%]	PCE [%]
with 1% CsPbBr ₃	25.01	1.042	78.85	20.54
with 3% CsPbBr ₃	24.58	1.095	77.43	20.83
with 5% CsPbBr ₃	24.20	1.116	76.60	20.68

Table S3. Accuracy of J_{SC} measured by J-V curves evaluated by the mismatch between integrated J_{SC} values from IPCE and extracted J_{SC} from J-V curves.

Devices	w/o CsPbBr ₃	with 1%	with 2%	with 3%	with 5%
		$CsPbBr_3$	CsPbBr ₃	CsPbBr ₃	CsPbBr ₃
Integrated <i>Jsc</i> (mA cm ⁻²)	24.79	24.72	24.55	24.19	24.08
Jsc extracted from J–V (mA cm ⁻²)	25.12	25.01	24.83	24.58	24.20
Mismatch (%)	1.3	1.2	1.1	1.6	0.5

Stabilizer	Туре	Cs- containing	Champion PCE (%)	Operational stability	Published year	Ref
MACI	Precursor	No	23.48% (Certified)	<i>T₉₀</i> =300 h @ 40 ℃(heat stability)	2019	[1]
MACI	Precursor	No	23.1%	<i>T₀₀</i> =150 h @ AM 1.5G, N₂ (light stability)	2021	[2]
MAI & MACI	Precursor	No	23.32% (Certified)	<i>T₈₀</i> ≈500 h @85 °C, N₂ (heat stability)	2019	[3]
MDACl ₂ (MDA = ⁺ H ₃ N-CH ₂ -NH ₃ ⁺) & MACI	Precursor	No	23.7% (Certified)	T_{90} =600 h @ AM 1.5G in the air with encapsulation (light stability)	2019	[4]
CsI & GAI (GA = HNC(NH ₂) ₂)	Precursor	Yes	23.5%	<i>T₈₀ ≈</i> 250 h @ 0.8 sum (light stability)	2020	[5]
Cs _{0.10} FA _{0.78} MA _{0.12} PbI _{2.55} Br _{0.45}	Perovskite	Yes	21.7%	T_{60} =280 h @ AM 1.5G in N ₂ (light stability)	2018	[6]
CsCl & Cs _{0.10} FA _{0.78} MA _{0.12} Pbl _{2.55} Br _{0.45}	Perovskite	Yes	22.1%	T_{90} =4000 min @ AM 1.5G, N ₂ (light stability)	2018	[7]
Cs _{0.2} MA _{0.2} FA _{0.6} Pb (I _{0.22} Br _{0.78}) ₃	Perovskite	Yes	21.5%	<i>T₈₀</i> =500 h @ AM 1.5G, №, (light stability)	2019	[8]
δ-CsPbl₃	Non- perovskite	Yes	20.45%	<i>T</i> ₇₀ =20 min @ AM 1.5G, Air (55%-60% RH) (light stability)	2019	[9]
MAPbBr ₃ & MACI	Perovskite	No	22.51%	7 ₉₇ =2600 h @ dark, 20% RH	2019	[10]
δ-CsPbl₃ & δ- RbPbl₃	Non- perovskite	Yes	22.30%	T_{92} =400 h @ AM 1.5G, N ₂ , (light stability)	2021	[11]
MAPbBr ₃ & MACI	Perovskite	No	25.2% (Certified)	<i>T</i> ₈₀ =500 h @ AM 1.5G, 40°C with encapsulation (light stability)	2021	[12]
CsPbBr ₃ & MACI & MAI	Perovskite	Yes	23.34%	T_{80} =1153 h @ AM 1.5G, N ₂ , (light stability)	This work	

Table S4. Summary of representative efficiency and stability of FAPbI₃-based PSCs stabilized with different types of additives reported in the past three years.

References

- M. Kim, G. H. Kim, T. K. Lee, I. W. Choi, H. W. Choi, Y. Jo, Y. J. Yoon, J. W. Kim, J. Lee, D. Huh, H. Lee, S. K. Kwak, J. Y. Kim and D. S. Kim, *Joule*, 2019, **3**, 2179-2192.
- 2 F. Ye, J. Ma, C. Chen, H. Wang, Y. Xu, S. Zhang, T. Wang, C. Tao and G. Fang, *Adv. Mater.*, 2021, **33**, e2007126.
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin and J. You, *Nat. Photon.*, 2019, 13, 460-466.
- 4 H. Min, M. Kim, S. U. Lee, H. Kim, G. Kim, K. Choi, J. H. Lee and S. I. Seok, *Science*, 2019, **366**, 749-753.
- M. Qin, H. Xue, H. Zhang, H. Hu, K. Liu, Y. Li, Z. Qin, J. Ma, H. Zhu, K. Yan, G. Fang, G. Li, U. S. Jeng,
 G. Brocks, S. Tao and X. Lu, *Adv. Mater.*, 2020, **32**, e2004630.
- Y. Zhao, H. Tan, H. Yuan, Z. Yang, J. Z. Fan, J. Kim, O. Voznyy, X. Gong, L. N. Quan, C. S. Tan, J. Hofkens,
 D. Yu, Q. Zhao and E. H. Sargent, *Nat. Commun.*, 2018, 9, 1607.
- 7 Q. Li, Y. Zhao, R. Fu, W. Zhou, Y. Zhao, X. Liu, D. Yu and Q. Zhao, *Adv. Mater.*, 2018, **30**, e1803095.
- 8 Q. Li, Y. Zhao, W. K. Zhou, Z. Y. Han, R. Fu, F. Lin, D. P. Yu and Q. Zhao, *Adv. Energy Mater.*, 2019, **9**, 1902239.
- 9 S. Wang, J. Jin, Y. Qi, P. Liu, Y. Xia, Y. Jiang, R. X. He, B. Chen, Y. Liu and X. Z. Zhao, *Adv. Funct. Mater.*, 2019, **30**, 1908343.
- 10 G. Yang, H. Zhang, G. Li and G. Fang, *Nano Energy*, 2019, **63**, 103835.
- E. A. Alharbi, T. P. Baumeler, A. Krishna, A. Y. Alyamani, F. T. Eickemeyer, O. Ouellette, L. Pan, F. S. Alghamdi, Z. Wang, M. H. Alotaibi, B. Yang, M. Almalki, M. D. Mensi, H. Albrithen, A. Albadri, A. Hagfeldt, S. M. Zakeeruddin and M. Grätzel, *Adv. Energy Mater.*, 2021, **11**, 2003785.
- 12 J. J. Yoo, G. Seo, M. R. Chua, T. G. Park, Y. Lu, F. Rotermund, Y. K. Kim, C. S. Moon, N. J. Jeon, J. P. Correa-Baena, V. Bulovic, S. S. Shin, M. G. Bawendi and J. Seo, *Nature*, 2021, **590**, 587-593.