Supplementary Information

Cobalt Phosphide Supported by Two-Dimensional Molybdenum Carbide (MXene) for Hydrogen Evolution Reaction, Oxygen Evolution Reaction, and Overall Water Splitting

Shilong Liu,^a Zongshan Lin,^a Rendian Wan,^a Yonggang Liu,^b Zhe Liu,^b Shuidong Zhang,^c Xiaofeng Zhang,^d Zhenghua Tang,^{*,b,c} Xiaoxing Lu,^{*,a} and Yong Tian^{*,a}

^{a.} School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006,

P. R. China. Emails: xxlu@gdpu.edu.cn, tian_yong_tian@163.com

^{b.} Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, Guangzhou, Guangdong 510006, China. Email: zhht@scut.edu.cn

^{c.} Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, China.

^{d.} Institute of New Materials, Guangdong Academy of Science, Guangzhou, 510650, China.

List of Figures

Figure S1. SEM image of the MAX precursor.

Figure S2. SEM image of the Co(OH)F (a) and Co(OH)F/Mo₂CT_x (b) precursor.

Figure S3. XRD pattern of the Mo₂Ga₂C phase and the Mo₂C MXene phase.

Figure S4. XRD pattern of Co(OH)F/Mo₂CT_x.

Figure S5. High resolution XPS spectra of the Mo 3d (a) and C 1s (b) electrons for CoP/Mo_2CT_x.

Figure S6. N₂ adsorption-desorption isotherm of various catalysts.

Figure S7. Exchange current densities of the electrocatalysts.

Figure S8. Raman spectra of CoP/Mo_2CT_x before and after HER test.

Figure S9. (a) SEM and (b) TEM image of CoP/Mo_2CT_x after the stability test of HER.

Figure S10. (a) SEM and (b) TEM image of CoP/Mo_2CT_x after the stability test of OER.

Figure S11. Cyclic voltammograms of (a) Mo_2C MXene, (b) CoP, and (c) CoP/ Mo_2CT_x in the region of 0-0.1 V in 1.0 M KOH at various scan rates and (d) the plots of current density as a function of scan rate derived from (a-c), respectively.

Figure S12. Cyclic voltammograms of (a) Mo_2C MXene, (b) CoP, and (c) CoP/ Mo_2CT_x in the region of 1.02-1.12 V in 1.0 M KOH at various scan rates and (d) the plots of current density as a function of scan rate derived from (a-c), respectively.

Figure S13. The electrochemically active surface area of different catalysts in HER (a) and OER (b) test.

Figure S14. Mass activity for various catalysts in HER (a) and OER (b) test.

Figure S15. The calculation models of CoP (a), $Mo_2C MXene$ (b), and CoP/Mo_2CT_x (c).

Figure S16. FTIR spectrum of CoP/Mo₂CT_x after OER test.

Figure S17. XRD patterns of CoP/Mo₂CT_x after OER test.

Figure S18. SEM image of CoP/Mo₂CT_x (fresh sample) and corresponding elemental mapping, EDX pattern with elemental composition of CoP/Mo₂CT_x.

Figure S19. SEM image of CoP/Mo_2CT_x (Post-OER sample) and corresponding elemental mapping, EDX pattern with elemental composition of CoP/Mo_2CT_x .

List of Tables

Table S1. The content of Co, P, and Mo elements percentage for all samples, measured by inductively coupled plasma-atomic emission spectroscopy (ICP-AES).

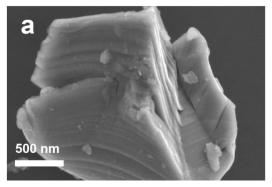

Table S2. Comparison of HER performance for non-precious metal electrocatalysts in1.0 M KOH.

Table S3. Fitting parameters obtained from the EIS data for the HER in 1 M KOH.

Table S4. Comparison of OER performance for non-precious metal electrocatalysts in1.0 M KOH.

Table S5. Fitting parameters obtained from the EIS data for the OER in 1 M KOH.

Table S6. Comparison of two electrode water splitting cell voltage of CoP/Mo_2CT_x with recently reported bifunctional electrocatalysts in alkaline medium.

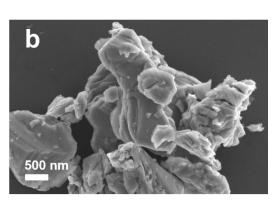
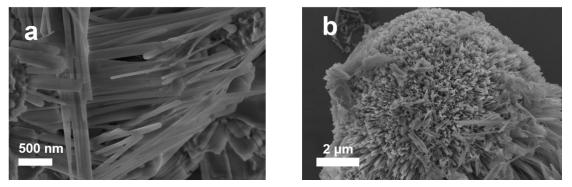
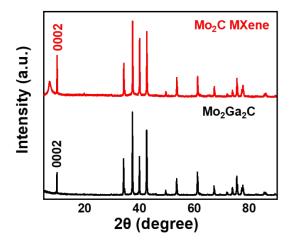




Figure S1. SEM image of the MAX precursor.

Figure S2. SEM image of the Co(OH)F (a) and Co(OH)F/Mo₂CT_x (b) precursor.

Figure S3. XRD pattern of the Mo₂Ga₂C phase and the Mo₂C MXene phase.

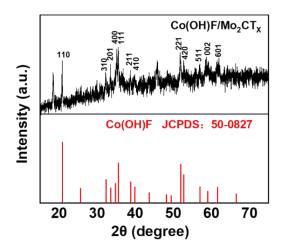


Figure S4. XRD pattern of Co(OH)F/Mo₂CT_x.

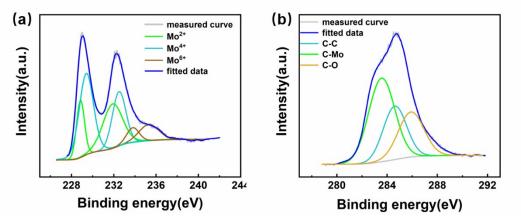


Figure S5. High resolution XPS spectra of the Mo 3d (a) and C 1s (b) electrons for CoP/Mo_2CT_x .

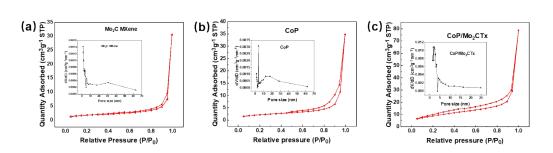
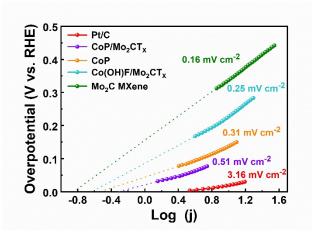
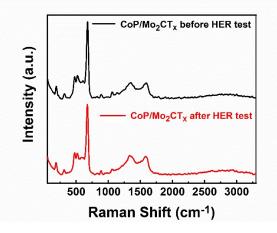
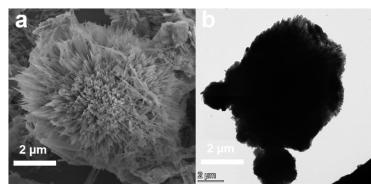
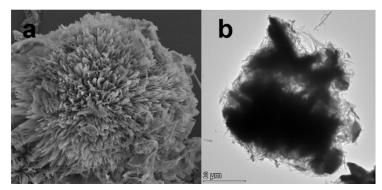
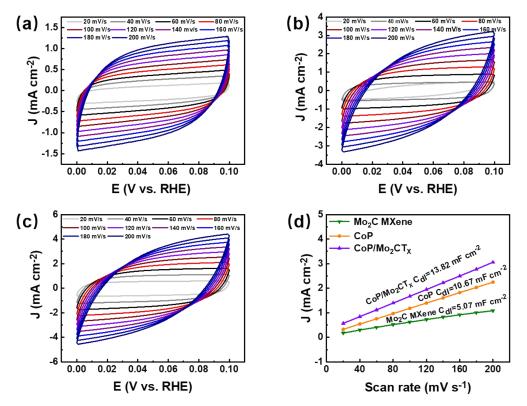
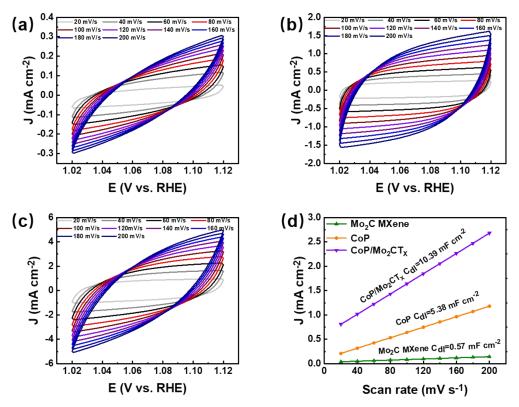


Figure S6. N₂ adsorption-desorption isotherm of various catalysts.


Figure S7. Exchange current densities of the electrocatalysts.


Figure S8. Raman spectra of CoP/Mo_2CT_x before and after HER test.


Figure S9. (a) SEM and (b) TEM image of CoP/Mo_2CT_x after the stability test of HER.

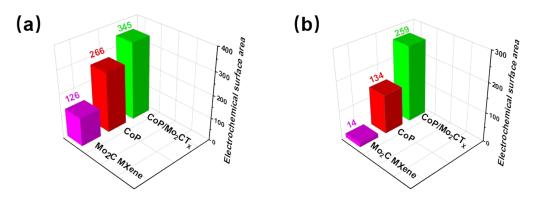

Figure S10. (a) SEM and (b) TEM image of CoP/Mo_2CT_x after the stability test of OER.

Figure S11. Cyclic voltammograms of (a) Mo_2C MXene, (b) CoP, and (c) CoP/ Mo_2CT_x in the region of 0-0.1 V in 1.0 M KOH at various scan rates and (d) the plots of current density as a function of scan rate derived from (a-c), respectively.

Figure S12. Cyclic voltammograms of (a) Mo_2C MXene, (b) CoP, and (c) CoP/ Mo_2CT_x in the region of 1.02-1.12 V in 1.0 M KOH at various scan rates and (d) the plots of current density as a function of scan rate derived from (a-c), respectively.

Figure S13. The electrochemically active surface area of different catalysts in HER (a) and OER (b) test.

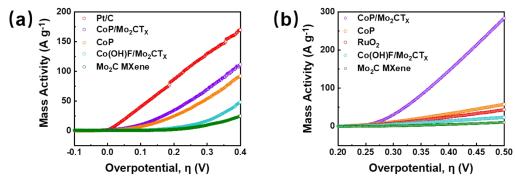
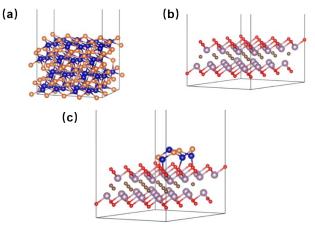
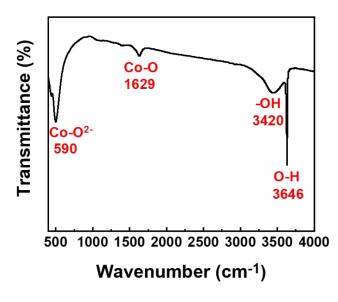
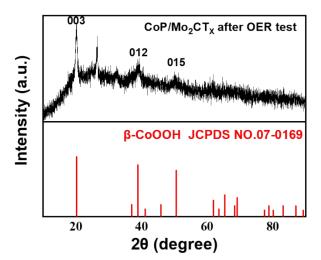
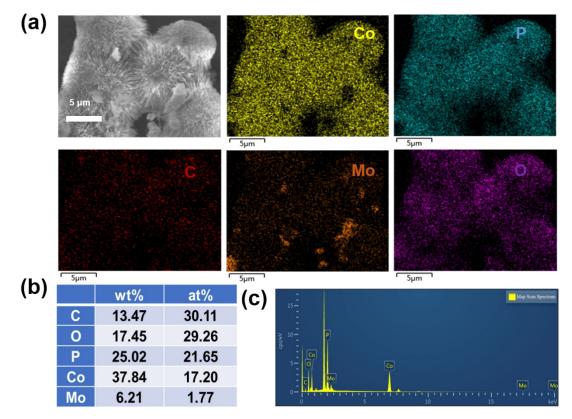


Figure S14. Mass activity for various catalysts in HER (a) and OER (b) test.


Figure S15. The calculation models of CoP (a), Mo₂C MXene (b), and CoP/Mo₂CT_x (c).

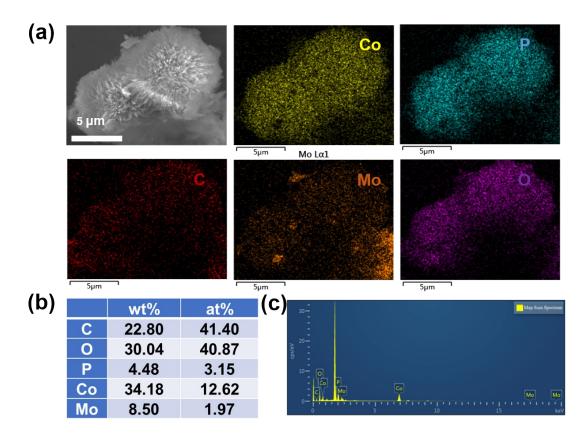

Figure S16. FTIR spectrum of CoP/Mo₂CT_x after OER test.

Figure S17. XRD patterns of CoP/Mo₂CT_x after OER test.

Figure S18. SEM image of CoP/Mo₂CT_x (fresh sample) and corresponding elemental mapping, EDX pattern with elemental composition of CoP/Mo₂CT_x.

Figure S19. SEM image of CoP/Mo_2CT_x (Post-OER sample) and corresponding elemental mapping, EDX pattern with elemental composition of CoP/Mo_2CT_x .

Catalyst	Co (wt. %)	P (wt. %)	Mo (wt. %)
CoP/Mo ₂ CT _x	31.34	25.23	17.52
After HER	34.18	18.45	16.04
After OER	38.64	3.62	16.55

Table S1. The content of Co, P and Mo elements percentage for all samples, measured by inductively coupled plasma- optical emission spectrometry (ICP-OES).

Electrocatalysts	η@10mA cm ⁻² Tafel Slope (mV) (mV dec ⁻¹)		Reference		
CoP/Mo ₂ CT _x	78	66	This work		
CoP/Ti ₃ C ₂ T _x	116	57	J. Mater. Chem. A, 2019 , 7, 27383–27393		
CoP@NC	129	58	ACS Catal. 2017 , 7, 3824.		
Ni _{0.9} Fe _{0.1} PS ₃ @MXene	196	NA	Adv. Energy Mater. 2018 , <i>8</i> , 1801127		
CoP/CC	209	129	J. Am. Chem. Soc. 2014 , 136, 7587		
CoP/NCNHP	115	66	J. Am. Chem. Soc. 2018 , 140, 2610		
NC-CNT/CoP	120	73	J. Mater. Chem. A 2018 , 6, 9009		
Co-P film/Cu	94	42	Angew. Chem., Int. Ed. 2015 , 54, 625.		
Co/N-doped carbon	260	91.2	ACS Nano 2016 , 10, 684.		
CoP NS/C	110	70.9	Green Chem. 2016 , 18, 2287.		
$Co-MoS_2/Mo_2CT_x$	112	82	Nanoscale 2019 , 11, 10992		
CoP NFs	136	56.2	ACS Catal. 2020 , 10, 412		
CoP@NF	155	96	Nano Energy 2020 , 67, 104174		
CoP/CC	87	72	Appl. Catal. B Environ. 2020 , 253, 21		
CoP/PC	76	NA	Small 2020 , <i>16</i> , 1900550		
CoP film	94	42	Angew. Chem., Int. Ed. 2015 , 54, 6251		

Table S2. Comparison of HER performance for non-precious metal electrocatalysts in 1.0 M KOH.

Catalysts	R₁(Ω)	R₂(Ω)	CPE ₁ -T(F)	CPE ₁ -P	R₃(Ω)	CPE ₂ -T(F)	CPE ₂ -P
CoP/Mo ₂ CT _x	2.567	1.347	0.11238	0.39366	3.373	0.24052	0.77702
СоР	2.434	2.466	0.20459	0.28379	3.479	0.24449	0.80125
Co(OH)F/Mo ₂ CT _x	2.486	1.271	0.39589	0.20214	3.841	0.23873	0.82258
Mo ₂ C MXene	3.509	5.737	0.13236	0.47809	4.666	0.07312	0.81123

Table S3. Fitting parameters obtained from the EIS data for the HER in 1 M KOH.

R₁: electrolyte resistance.

R₂: charge-transfer resistance.

 $R_{3}{:}\ solid-electrolyte \ interface \ resistance.$

CEP₁: capacitance generated from the Faradic process, and constant-phase element.

 $\mathsf{CEP}_2:$ capacitance arisen from the solid-electrolyte interface process.

Electrocatalysts	η@10mA cm ⁻² (mV)	Tafel Slope (mV dec ⁻¹)	Reference
CoP/Mo ₂ CT _x	260	51	This work
CoP-MNA/NF	290	65	Adv. Funct. Mater. 2015 , 25, 7337
Co-P film	345	47	Angew. Chem., Int. Ed. 2015 , 54, 6251
CoP NR/C	320	71	ACS Catal. 2015, 5, 6874
CoP/rGO	340	66	Chem. Sci. 2016 , 7, 1690
CoP/NCNHP	310	70	J. Am. Chem. Soc. 2018 , 140, 2610
Ni0.7Fe0.3PS3@MXen e	282	36.5	Adv. Energy Mater. 2018 , 8, 1801127
CoP@NPMG	276	54	Nanoscale 2018 , 10, 2603
CoP@PC-750	283	53	Small 2019 , <i>15</i> , 1900550
_	295	73	Nano Energy 2019 , 56, 109
CoP/CoO	337	72.1	Small 2020 , <i>16</i> , 1905075
CoP/TiOx Co2P NRs	372	111.8	J. Am. Chem. Soc. 2020 , 142, 8490
CoP/CC	340	87	Adv. Funct. Mater. 2020 , 30, 1909618
	323	49.6	ACS Catal. 2020 , 10, 412
CoP NFs	340	66	Chem. Sci. 2016 , 7, 1690.
CoP/Graphene CoP/CNT	330	40	ACS Appl. Mater. Interfaces 2015 , 7, 28412.

Table S4. Comparison of OER performance for non-precious metal electrocatalysts in 1.0 M KOH.

Catalysts	R ₁ (Ω)	R ₂ (Ω)	CPE ₁ -T(F)	CPE1-P	R₃(Ω)	CPE2-T(F)	CPE2-P
CoP/Mo ₂ CT _x	2.674	1.091	0.01291	0.53243	3.389	0.046454	0.70913
СоР	2.475	1.888	0.16482	0.33264	3.452	0.25667	0.81997
COP	2.475	1.000	0.10482	0.55204	5.452	0.23007	0.81997
Co(OH)F/Mo ₂ CT _x	2.494	1.696	0.12766	0.36013	3.514	0.26314	0.82463
Mo ₂ C MXene	2.403	1.873	0.24933	0.19699	3.815	0.05575	0.74074

Table S5. Fitting parameters obtained from the EIS data for the OER in 1 M KOH.

R₁: electrolyte resistance.

R₂: charge-transfer resistance.

 $R_{3}{:}\ solid-electrolyte \ interface \ resistance.$

CEP₁: capacitance generated from the Faradic process, and constant-phase element.

 $\mathsf{CEP}_2:$ capacitance arisen from the solid-electrolyte interface process.

Electrocatalyst	Potential (V) at 10 mA cm ⁻²	Reference
CoP/Mo ₂ CT _x	1.56	This work
NiCoP/rGO	1.59	Adv. Funct. Mater. 2016 , 26, 6785.
Co-P film	1.65	Angew. Chem. Int. Ed. 2015 , 54, 6251
CoP-MNA	1.62	Adv. Funct. Mater. 2015 , <i>25</i> , 7337
CoP NR	1.587	ACS Catal. 2015 , 5, 6874
NiCoP/Ti	1.64	Adv. Mater. Interfaces 2016 , 3, 1500454
CoP nanosheets	1.54	Green Chem. 2016 , 18, 2287
CoP/GO	1.7	Chem. Sci. 2016 , 7, 1690
CoP/CC	1.61	ChemSusChem 2016 , 9, 472
Fe-CoP/Ti	1.60	Adv. Mater. 2017 , 29, 1602441
CoP NA/CC	1.65	ChemElectroChem 2017 , <i>4</i> , 1840
Ni-Co-P HNBs	1.62	Energy Environ. Sci. 2018 , 11, 872
S:CoP@NF	1.617	Nano Energy 2018 , 53, 286
CoP-400	1.65	Adv. Energy Mater. 2018 , <i>8</i> , 1802445
CoP@a-CoOx	1.66	Adv. Sci. 2018 , 5, 1800514
CoP/NCNHP	1.64	J. Am. Chem. Soc. 2018 , 140, 2610

Table S6. Comparison of the water splitting cell voltage of CoP/Mo_2CT_x with recently reported bifunctional electrocatalysts in alkaline medium.