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Fig. S1 Precursor configuration for CBGSe (or CBTS) films on (a) quartz glass and (b) Mo-
coated soda-lime glass substrates.
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Fig. S2 Image of CBGSe and CBTS devices for Hall measurements.
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Fig. S3 (a) XRD patterns of CBGSe (blue curve) and CBTS (red curve) films deposited on Mo-
coated soda-lime glass substrates. The XRD patterns are compared with simulated XRD patterns
(black line) using CrystalDiffract software with lattice parameters adapted from ICDD reference
code 01-71-2889 for CBGSe and 03-65-7569 for CBTS. Red stick bars indicate XRD pattern of
BaS; (ICDD 01-082-1710). (b) Surface and cross-section SEM images of the films.
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Fig. S4 Hall signal extraction on CBGSe sample using a parallel dipole line (PDL) setup: (a)
Magnetic field B traces as the reference signal, and (b) Fourier transform of the reference signal
B. (¢) Transverse Hall signal Rxy and (d) Fourier transform of Rxy. The dashed dotted lines
correspond to the second and third harmonics of the AC signal B. The red-filled region is the power
spectral density (PSD) and the curve is the Fourier spectra of the signal. (e) Lock-in detection of
the in-phase (Hall signal) and out-of-phase signals over time where the Hall resistance Ry is
extracted. A lock-in time constant of 120s is used in this example.
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Fig. S5 Hall signal extraction on CBTS sample using a PDL setup: (a) Magnetic field B traces as
the reference signal, and (b) Fourier transform of the reference signal B. (c¢) Transverse Hall signal
Rxy and (d) Fourier transform of Rxy. The dashed dotted lines correspond to the second and third
harmonics of the AC signal B. The red-filled region is the power spectral density (PSD) and the
curve is the Fourier spectra of the signal. (e¢) Lock-in detection of the in-phase (Hall signal) and

out-of-phase signals over time where the Hall resistance Ry is extracted. A lock-in time constant
of 120s is used in this example.
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Fig. S6 Al Ka XPS core level spectra of each detected element for the CBTS surface as a
function of sputtering time. Spectra for expected Cu 2p, Ba 3d, Sn 3d and S 2p core levels are
shifted vertically for clarity to show that their shape and peak broadness are unchanged with
sputtering. There is a slight shift (0.1 eV) across all core levels, suggesting mild sputtering
induced band bending. Surface contaminant oxygen and carbon core levels are also shown to
decrease with sputtering.
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Table S1 Atomic abundances and associated uncertainty for each expected element in CBTS films

as a function of sputter cleaning time, calculated by fitting XPS core level spectra.

Element
(Core level)
Cu (2p)
Ba (3d)
Sn (3d)

S (2p)

Expected
abundance

0.250
0.125
0.125

0.500

Uncertainty  As-loaded 20 min 40 min 80 min

+ 0.004

+ 0.006

+ 0.004

+ 0.005

0.106

0.130

0.126

0.639

0.121

0.131

0.129

0.619

0.132

0.133

0.130

0.605

0.146

0.139

0.128

0.587
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Fig. S7 Al Ka XPS core level spectra of each detected element for the CBGSe surface as a function
of sputter time. Spectra for expected Cu 2p, Ba 3d, Ge 2p and Se 3d core levels are vertically
shifted for clarity to show that their shape and peak broadness are unchanged with sputtering.
There is a slight shift (0.1 eV) across all core levels, suggesting mild sputtering induced band
bending. Surface contaminant oxygen and carbon core levels are also shown to decrease with
sputtering. Note that the C Is core level heavily overlaps with two germanium Auger peaks.
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Table S2 Atomic abundances and associated uncertainty for each expected element in CBGSe
films as a function of sputter cleaning time, calculated by fitting XPS core level spectra.

Element Expected
Uncertainty As-loaded 20 min 40 min 80 min 120 min
(Core level) abundance

Cu (2p) 0.250 + 0.003 0.172 0.165 0.161 0.162  0.155
Ba (3d) 0.125 + 0.004 0.199 0.200 0.200 0.200  0.202
Ge (2p) 0.125 + 0.006 0.130 0.135 0.136 0.146  0.150
Se (3d) 0.500 + 0.006 0.500 0.501  0.503 0.492  0.493
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Table S3 Parameters derived from UPS and IPES measurements for as-loaded and sputtered
CBGSe and CBTS surfaces; Evsm, Ecsm, Eonser €nergy values are referenced to the Fermi-level.

CBGSe CBTS
Sputter Evsv Ecow Eowa  EA E, Evsv Ecow Eowa  EA  Eq
duration (+ (+ (+ (+ (+ (+ (+ (+ (+ (+
0.05eV) 0.2eV) 0.01eV) 0.2eV) 0.2eV) 0.03eV) 0.2eV) 0.01eV) 02eV)  0.2eV)
As- 060  -1.00 1716  3.06  1.60 055 -1.80 1717 225 235
loaded
20 min 070  -1.10 1667 345 180 070  -130 1698 294  2.00
40 min 080  -1.10 1656 356  1.90 070  -130 1662 330  2.00
80 min 080  -1.10 1645  3.67 190 070  -130 1664 328  2.00
120 min 080  -1.10 1640 372 190
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Supporting note S1: Eliott model

The Elliot model describes the absorption onset of a direct band gap semiconductor with an exciton

(and its excited states) and the continuum contribution, a = a, + a,: '

E
a, X T Fsech B —
n=1
ap | sech [(E —E)/T]

acoc—j
Eg 1—expl 21 /Ex/(E E l

The absorption coefficient of CBTS is modeled by the sum of continuum and exciton contributions,
which are convoluted with a broadening parameter of /"= 24 meV. Here, E is the exciton binding
energy, n refers to the principal quantum number, E; is the band gap, and «, is the band-band
transition absorption strength in the absence of Coulomb interaction.

The absorption coefficient of CBGSe is modeled by the sum of two continuum contributions and
two exciton contributions with an equal exciton binding energy E.=20 meV and /7= 19 meV and
I>=33 meV.

Supporting note S2: Fraction of free carriers

Excitons and dissociated electrons and holes coexist in a semiconductor. The fraction of free
An

An+An,
be estimated from a modified Saha equation, which includes carrier screening and the Mott
transition (Ref 4, equation 13).

carriers An to total injected carriers, ¢ = , Where Any is the concentration of excitons, can

Fig. S8 shows the quantum yield as a function of total carrier density for the exciton binding
energies of 20 meV and 25 meV, which were deduced from modeling the absorption onset. Average
relative electron- and hole effective masses of 0.22 and 0.64 for CBTS and 0.16 and 0.41 for
CBGSe were used, respectively.’

Assuming a best-case minority carrier lifetime of 1 us, a 1-micron-thick sample and a photon flux
of 10'7 cm™s™!, a steady-state carrier density of ~ 10" cm™ would be estimated under AM1.5
excitation conditions. Fig. S8 clearly shows that, for this case and all smaller carrier lifetimes, a
free carrier quantum yield of close to unity is expected.
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Fig. S8 Fraction of free carriers, or free carrier quantum yield (¢), for different exciton binding
energies and as a function of total carrier density, An+4n,, as modeled by the modified Saha

equation at 300 K.

From optical-pump terahertz-probe spectroscopy (OPTP), the sum of electron and hole mobilities
is obtained by modeling with the well-known Drude formula,

eTSCClt 1

= + =
MZ l’le Mh mr 1 _ inscat

1 1 1

—_ g —

m, m, my

with scattering time Tcat and the reduced mass m;.°
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Fig. S9 EQF of representative (a) CBGSe and (b) CBTS solar cells along with optical
absorption spectra of CBGSe and CBTS films.
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Fig. S10 Cross-section SEM images of representative CBGSe and CBTS solar cells.
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Fig. S11 (a) Impact of post-annealing (at 200°C under ambient air) on the J-V curve for a
representative CBTS solar cell. (b) Evolution of the solar cell performance parameters with
increasing post-annealing time .
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Fig. S12 One-diode model fit of light /-} curves of a representative CBGSe solar cell (before
and after post-annealing treatment at 200°C for 20 min under ambient air) using Lambert-W
fitting method.” (The device area is 0.425 cm?.)
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