Electronic Supplementary Information (ESI)

Rapid ionic conductivity of ternary composite electrolytes for superior solid-state

batteries with high rate and long cycle life operated at room temperature

Wei Xiong,^{ab+} Tao Huang,^{a+} Yuqing Feng,^{a+} Xue Ye,^a Xiaoyan Li,^a Jianneng Liang,^a

Shenghua Ye,^{ac} Xiangzhong Ren,^a Yongliang Li,^a Qianling Zhang, *a Jianhong Liu*ac

^a Graphene Composite Research Center, College of Chemistry and Environmental Engineering, Shenzhen University, 518060, P.R. China

^b College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen,

518060, P.R. China

^c Shenzhen Eigen-Equation Graphene technology Co. Ltd, Shenzhen, 518060, P.R. China

*Corresponding authors

+Contribute equally to this work

Email address: liujh@szu.edu.cn (J. Liu), zhql@szu.edu.cn (Q. Zhang)

Figure S1. XPS spectra of LATP.

Figure S2. TEM and elemental mapping images of LATP particles.

Figure S3. TEM and elemental mapping images of flower-like CeO₂.

Figure S4. XPS spectra of the flower-like CeO_2 particles with oxygen vacancies (a) survey spectrum, (b) Ce 3d, and (c) O 1s.

Figure S5. EPR spectra of flower-like CeO_2 particles before and after hydrogen reduction.

Figure S6. Nitrogen adsorption-desorption isotherms of (a) commercial CeO₂ particles,(b) flower-like CeO₂.

Figure S7. Elemental mapping of the cross-sectional PVDF-HFP/LiTFSI/LATP film.

Figure S8. Elemental mapping of the cross-sectional PVDF-HFP/LiTFSI/LATP/CeO₂

film.

Figure S9. (a) TGA and (b) Differential Thermal Analysis (DTA) curves of PVDF-HFP/LiTFSI, PVDF-HFP/LiTFSI/LATP and PVDF-HFP/LiTFSI/LATP/CeO₂ CSEs.

Figure S10. Stress-strain curves of PVDF-HFP/LiTFSI, PVDF-HFP/LiTFSI/LATP, PVDF-HFP/LiTFSI/LATP/CeO₂ films.

Figure S11. Chronoamperometry curves of (a) PVDF-HFP/LiTFSI/LATP, (b) PVDF-HFP/LiTFSI/CeO₂ and (c) PVDF-HFP/LiTFSI under a potential step of 10 mV at room temperature.

Figure S12. (a) Nyquist plots of SS/CSE/SS cells with the PVDF-HFP/LiTFSI, PVDF-HFP/LiTFSI/CeO₂, PVDF-HFP/LiTFSI/LATP and PVDF-HFP/LiTFSI /LATP/CeO₂ as electrolytes, before electrochemical cycling test. (b) The image of the magnified

region with high frequency.

Figure S13. CV curves of LFP cells with (a) PVDF-HFP/LiTFSI/LATP, and (b)

PVDF-HFP/LiTFSI/LATP/CeO $_2$ as the electrolyte.

Figure S14. Voltage-time profile of Li/(PVDF-HFP/LiTFSI)/Li and Li/(PVDF-HFP/LiTFSI/LATP/CeO₂)/Li at 0.1, 0.2 and 0.5 mA cm⁻².

Figure S15. XRD patterns of the PVDF-HFP/LiTFSI, PVDF-HFP/LiTFSI/LATP, PVDF-HFP/LiTFSI/LATP/CeO₂ electrolytes in the LFP cells after electrochemical cycles at 2 C.

Figure S16. SEM images of the surface morphologies of (a) PVDF-HFP /LiTFSI/LATP and (b) PVDF-HFP/LiTFSI /LATP /CeO₂ CSEs after plating/stripping

cycles.

Figure S17. SEM images of surface morphologies of (a) PVDF-HFP/LiTFSI, (b) PVDF-HFP/LATP/LiTFSI, and (c) PVDF-HFP/LiTFSI/LATP/CeO₂ films contacted with Li metal after 1000 cycles at 2 C.

Figure S18. SEM images of the surface morphologies of (a) PVDF-HFP/LiTFSI, (b) PVDF-HFP/LATP/LiTFSI, and (c) PVDF-HFP/LiTFSI/LATP/CeO₂ films contacted with LFP cathode after 1000 cycles at 2 C.

Figure S19. Schematic illustration of the dissociation process of LiTFSI induced by CeO₂ with oxygen vacancies.

Figure S20. The molecular structures with the lowest energy conformation of a) LiTFSI and b) TFSI⁻ anion.

Figure S21. The most stable crystallographic structures of (a,c) LiTFSI, and (b,d) TFSI- anion adsorbed on the CeO_2 (111) surface atomic structure. O in red, Ce in light yellow, C in gray, F in light blue, S in yellow, N in blue, Li in purple.

Figure S22. (a) PDOS, and (b,c) COHP images of the interaction between LiTFSI and

 CeO_2 (111) surface with one oxygen vacancy.

	peaks	u'''	u"	u	v""	v"	v	
Ce ⁴⁺ 3 d	BE(eV)	916.38	907.33	900.59	897.96	888.43	881.99	
	area	70181.7 7	8920	54064	04748.9	67884.8 8	76596.8 4	
Ce ³⁺ 3 d	peaks	u'	v'	u ₀	v ₀			
	BE(eV)	902.74	884.06	898.42	880.08			
	area	49558.5 5	74337.8 3	6132.38 6	9198.57 9			
$[Ce^{3+}] = 26.7\%, [Ce^{4+}] = 73.3\%, [Vo] = 6.7\%$								

Table S1. Peak positions and areas for core level of Ce 3d in CeO_2 nanosheets

Table S2. Peak positions and areas for core level of O 1s in CeO_2 nanosheets.

O 1S	peaks	O _{ads}	O _{lat}			
	BE(eV)	531.2	529.2			
	area	27947.98	83029.78			
[O _{ads}]=25.2%, [O _{lat}]=74.8%						

Electrochemical Li⁺ Specific capacity of Reference CSEs composition Ionic conductivity window (V) transfer LFP /Temperature number cells/Temperature **PVDF-** 1.66×10^{-3} S 5.1 0.35 166.6 mAh g⁻¹ at 0.1 This work HFP/LATP/CeO₂ cm⁻¹ C, 25 °C 83.1 mAh g⁻¹ at 2 C after 1000 cycles 25 °C Ca-CeO₂/PEO 1.3×10^{-4} S 4.5 0.453 93 mAh g-1 Adv. cm-1 after 200 cycles at 1 Energy 60 °C C 60 °C Mater.1 CeO₂/PEO 1.1×10^{-3} S 5.1 0.47 160 mAh g⁻¹ at 0.1 C Nano 60 °C cm⁻¹ Energy² 60 °C 9.09×10^{-5} S CeO₂/PEO/liquid 155.3mAh g⁻¹ 4.89 0.4 J. Membr. cm⁻¹ after 130 cycles at 1 Sci.3 electrolyte 30 °C C and 30 °C $1 \times 10^{-4} \text{ S cm}^{-5}$ 0.72 PEG-MDI/LiDMPA 159 mAh/g J. Mater. 1 50th 99.1% at 0.2 C Chem. A⁴ 25 °C 80 °C LLTO/PEO/FEC $1.13 \times 10^{-4} \text{ S}$ 5.2 0.35 86 mAh·g⁻¹ at 0.5 C Chem. Eng. 35 °C J.5 cm-1 25 °C PEO/CsClO₄ 1.9×10^{-4} S 4.35 NA 120 mAh \cdot g⁻¹ at 0.5 C Energy 60 °C cm⁻¹ Storage 60 °C Mater.6 100 mAh $\cdot g^{\text{-1}}$ at 0.1 C 2.3×10^{-5} S 5.03 LLZTO/PEO 0.47 Adv. cm⁻¹ 30 °C Energy 30 °C Mater.7 SiO₂ areogel/PEO $6 \times 10^{-4} \text{ S cm}^{-5}$ NA 110 mAh·g⁻¹ at 0.5 C Adv. 1 25 °C Mater.8 60 °C 5.01 × 10⁻⁴ S 5.26 160.3 mAh g⁻¹ at 0.2 PEO/ionic liquid 0.34 Energy cm-1 C 60 °C Storage 60 °C Mater.9 PVDF/PEO NA 4 NA 97.8 mAh g-1 at 1 C Chem. Eng.

Table S3. Comparison of electrochemical performance between our work and reported

state-of-the-art CSEs.

				after 600 cycles	$J.^{10}$
DEO/DN	1 45 × 10-4 S	5 16	0.22	142.2 mAb(a=1.01)	I Moton
PEO/DIN	1.43 × 10 · 5	5.10	0.55	145.5 mAn ² g ⁻ at 0.1	J. Mater.
				C 60.ºC	Chem. A ¹¹
DEO/HDMA	1.12×10^{-4} S	5 1	0.22	80.4 mAb at 1 C	I Moton
PEO/HPMA	1.13 × 10 · 5	5.1	0.22	80.4 mAn g^2 at 1 C	J. Mater.
	25 °C			after 1255 cycles	Chem. A ²²
BVDE	5.1 × 10-4 S	5	0.45	33 °C	I Moton
	5.1 × 10 · 5	5	0.43	$70 \text{ mAn g}^{-1} \text{ at } 2 \text{ C}$	J. Mater.
HFP/LLATO/Ll ₃ PO ₄	25.00			25 C	Chem. A. ³
	25° C 25×10^{-4} S	5 50	0.52	94.1 mAb and at 1.0	Cham. Eng
LLZAU/PEU	2.5 × 10 + 5	5.58	0.55	$84.1 \text{ mAn g}^{+} \text{at I C}$	Unem. Eng.
	25 °C			25 °C	J.14
	25° C	NA	0.56	149.7 mAb at 0.2	Nono
FEO/LAUF	1.0/ ~ 10 · 5	MA	0.50	146.7 mAn g * at 0.2	Enormu ¹⁵
				C 25.ºC	Energy
Callulaca/LACD	23 °C	4.06	NA	148 mAh s-l at 0.1 C	Nono
Cellulose/LAGP	1.1 × 10 · 5	4.90	NA	148 mAn g · at 0.1 C	
	60 °C			00 C	Leu."
	00^{-1}	4 25	NA	$154.0 \text{ mAb } \text{c}^{-1} \text{ at } 0.1$	Cham Eng
I VDI/LEZIO	0.0 × 10 · 5	4.23	INA	C	Ulfr
	25 °C			55 °C	J. *
PEO /aramid	25 C	4.2	NA	$152 \text{ mAh } a^{-1} \text{ at } 0.1 \text{ C}$	Nano
I EO/arannu	0.0 ^ 10 S	4.2	INA	50 °C	Fnergy ¹⁸
	25 °C			50 C	Lifergy
PEO/LiZra(PO.)	1.2×10^{-4} S	18	0.36	$155 \text{ mAh } a^{-1} \text{ at } 100$	I Am
1 EO/EIZI2(1 O4)3	cm^{-1}	т.о	0.50	135 mAn g at 100 uA cm^{-2}	J. Alli.
	30 °C			30 °C	Soc ¹⁹
ΡΕΟ/ΡΟΑ/ΙΙΖΤΟ	1.1×10^{-4} S	48	NA	$129.5 \text{ mAh } \sigma^{-1} \text{ at } 0.2$	I Mater
TEORDIVELETO	cm ⁻¹	1.0	1471	C	Chem A^{20}
	30 °C			50 °C	
PEO/SiOa/LiaSO	1.3×10^{-4} S	5	0.45	$80 \text{ mAh } \sigma^{-1} \text{ at } 0.5 \text{ C}$	Small ²¹
1 10/0102/112004	cm ⁻¹	2	0.73	60 °C	Siliali
	60 °C			00 C	
PEO/vermiculite	79 × 10-7 S	5 35	0 246	159.9 mAb o ⁻¹ at 0.1	Adv
	cm ⁻¹	5.55	0.240	C	Fnergy
	25 °C			с 60 °С	Mater ²²
	23 C				Iviate1

Reference

1. H. Chen, D. Adekoya, L. Hencz, J. Ma, S. Chen, C. Yan, H. J. Zhao, G. L. Cui and S. Q. Zhang, *Adv Energy Mater.*, 2020, **10**, 2000049.

- X. Ao, X. Wang, J. Tan, S. Zhang, C. Su, L. Dong, M. Tang, Z. Wang, B. Tian and H. Wang, *Nano Energy*, 2021, **79**, 105475.
- 3. P. Lun, P. Liu, H. Lin, Z. Dai, Z. Zhang and D. Chen, *J. Memb. Sci.*, 2019, **580**, 92-100.
- Z. K. Zhao, Y. M. Zhang, S. J. Li, S. H. Wang, Y. L. Li, H. W. Mi, L. N. Sun, X. Z. Ren and P. X. Zhang, *J. Mater. Chem. A*, 2019, 7, 25818-25823.
- 5. H. Li, W. Liu, X. Yang, J. Xiao, Y. Li, L. Sun, X. Ren, P. Zhang and H. Mi, *Chem. Eng. J.*, 2021, **408**, 127254.
- X. Yang, Q. Sun, C. Zhao, X. Gao, K. Adair, Y. Zhao, J. Luo, X. Lin, J. Liang, H. Huang, L. Zhang, S. Lu, R. Li and X. Sun, *Energy Storage Mater.*, 2019, 22, 194-199.
- 7. H. Huo, Y. Chen, J. Luo, X. Yang, X. Guo and X. Sun, *Adv. Energy Mater.*, 2019, **9**, 1804004.
- 8. D. Lin, P. Y. Yuen, Y. Liu, W. Liu, N. Liu, R. H. Dauskardt and Y. Cui, *Adv. Mater.*, 2018, **30**, 1802661.
- J. Tan, X. Ao, A. Dai, Y. Yuan, H. Zhuo, H. Lu, L. Zhuang, Y. Ke, C. Su, X. Peng, B. Tian and J. Lu, *Energy Storage Mater.*, 2020, 33, 173-180.
- L. Gao, J. Li, J. Ju, L. Wang, J. Yan, B. Cheng, W. Kang, N. Deng and Y. Li, *Chem. Eng. J.*, 2020, **389**, 124478.
- Y. Li, L. Zhang, Z. Sun, G. Gao, S. Lu, M. Zhu, Y. Zhang, Z. Jia, C. Xiao, H. Bu, K. Xi and S. Ding, *J. Mater. Chem. A*, 2020, 8, 9579-9589.
- 12. G. Wang, X. Zhu, A. Rashid, Z. Hu, P. Sun, Q. Zhang and L. Zhang, *J. Mater. Chem. A*, 2020, **8**, 13351-13363.
- H. Yang, J. Bright, B. Chen, P. Zheng, X. Gao, B. Liu, S. Kasani, X. Zhang and N. Wu, *J. Mater. Chem. A*, 2020, 8, 7261-7272.
- 14. D. Cai, D. Wang, Y. Chen, S. Zhang, X. Wang, X. Xia and J. Tu, *Chem. Eng. J.*, 2020, **394**, 124993.
- X. Wang, H. Zhai, B. Qie, Q. Cheng, A. Li, J. Borovilas, B. Xu, C. Shi, T. Jin, X. Liao, Y. Li, X. He, S. Du, Y. Fu, M. Dontigny, K. Zaghib and Y. Yang, *Nano Energy*, 2019, 60, 205-212.
- 16. C. Wang, D. Huang, S. Li, J. Yu, M. Zhu, N. Liu and Z. Lu, *Nano Lett.*, 2020, **20**, 7397-7404.
- 17. J. Lu, Y. Liu, P. Yao, Z. Ding, Q. Tang, J. Wu, Z. Ye, K. Huang and X. Liu, *Chem. Eng. J.*, 2019, **367**, 230-238.
- L. Liu, J. Lyu, J. Mo, H. Yan, L. Xu, P. Peng, J. Li, B. Jiang, L. Chu and M. Li, Nano Energy, 2020, 69, 104398.
- N. Wu, P.-H. Chien, Y. Li, A. Dolocan, H. Xu, B. Xu, N. S. Grundish, H. Jin, Y.-Y. Hu and J. B. Goodenough, *J. Am. Chem. Soc.*, 2020, **142**, 2497-2505.
- 20. Z. Huang, W. Pang, P. Liang, Z. Jin, N. Grundish, Y. Li and C.-A. Wang, J. *Mater. Chem. A*, 2019, **7**, 16425-16436.
- 21. J. Yu, C. Wang, S. Li, N. Liu, J. Zhu and Z. Lu, *Small*, 2019, **15**, 1902729.
- 22. W. Tang, S. Tang, C. Zhang, Q. Ma, Q. Xiang, Y.-W. Yang and J. Luo, *Adv. Energy Mater.*, 2018, **8**, 1800866.