Supplementary information

Remarkable CO_x tolerance of Ni³⁺ active species in Ni₂O₃ catalyst for sustained electrochemical urea oxidation

Muhammed Safeer N. K.,^{a,b} Chandraraj Alex, ^a Rajkumar Jana^c, Ayan Datta^c Neena S John^{a*} ^aCentre for Nano and Soft Matter Sciences, Shivanapura, Bengaluru 562162, India ^bManipal Academy of Higher Education, Manipal 576104, India ^c School of Chemical Sciences, Indian Association for the Cultivation of Science (IACS), Kolkata 700032, India

Corresponding author Email: jsneena@cens.res.in

Figure S1. Raman spectra of NiO and Ni₂O₃

Figure S2. FESEM images of (a, b) NiO and (c, d) Ni₂O₃.

Figure S3. HAADF images and EDS elemental mapping of (a, b and c) NiO and (d, e and f) Ni_2O_3 in STEM mode.

Table S1. Elemental	composition	of nickel and	l oxvgen in	NiO and Ni ₂ O ₃	from TEM
	• omposition		* onj 5 e n m	100 and 1020 J	monn i bitti

	NiO		Ni ₂ O ₃			
Element	Atomic % O/Ni Ratio		Element	Atomic %	O/Ni	
					Ratio	
Nickel	40.33	1.48	Nickel	22.31	3.48	
Oxygen	59.66]	Oxygen	77.68]	

Table S2. Percentage of oxygen from deconvoluting O1s spectra of NiO and Ni_2O_3

Sample	O_1 (%) – lattice	O_2 (%) – adsorbed	O ₃ (%) – hydroxide
	oxygen	oxygen	
NiO	57.7 %	42.3 %	
Ni ₂ O ₃	43.4 %	41.5 %	15.1 %

Figure S4. XPS survey spectra of (a) NiO and (b) Ni_2O_3 .

Figure S5. CV of (a) NiO and (b) Ni_2O_3 in 1 M KOH and 1 M KOH + 0.150 M urea at a scan rate of 10 mV s⁻¹

Figure S6. CV of (a) NiO and (b) Ni_2O_3 at various scan rates (25 - 125 mV s⁻¹) in 1 M KOH in the region of -0.4 to -0.2 V vs. Ag/AgCl_(sat.KCl) and (c) The capacitive current densities at -0.30 V vs. Ag/AgCl_(sat.KCl) as a function of scan rates for NiO and Ni₂O₃

Calculation:

- (1) ECSA of NiO : Cdl / Csp = (11.6857×10^{-6}) F/ (40 x 10⁻⁶) F/cm⁻² = 0.29 cm²
- (2) ECSA of Ni₂O₃ : Cdl / Csp = (29.8217 x 10⁻⁶) F / (40 x 10⁻⁶) F/cm⁻² = 0.74 cm²
- (Csp = average specific capacitance Ni_xO_v systems¹)

Figure S7. CVs showing UOR activity of NiO catalyst in 1 M KOH containing different urea concentration at various scan rates from 10 - 150 mV s⁻¹ (a) 0.000 M urea, (b) 0.025 M urea, (c) 0.050 M urea, (d) 0.075 M urea, (e) 0.100 M urea, (f) 0.150 M urea, (g) 0.200 M urea, (h) 0.300 M urea and (i) 0.350 M urea.

Figure S8. CVs showing UOR activity of Ni_2O_3 catalyst in 1 M KOH containing different urea concentration at various scan rates from 10 - 150 mV s⁻¹ (a) 0.000 M urea, (b) 0.025 M urea, (c) 0.050 M urea, (d) 0.075 M urea, (e) 0.100 M urea, (f) 0.150 M urea, (g) 0.200 M urea, (h) 0.250 M urea, (i) 0.300 M urea, (j) 0.400 M urea and (k) 0.600 M urea.

Figure S9. CVs showing UOR activity of NiO catalyst in different molar KOH solution containing 0.150 M urea acquired at various scan rates, $10 - 150 \text{ mV s}^{-1}$ (a) 3 M KOH, (b) 4 M KOH, (c) 6 M KOH and (d) 8 M KOH.

Figure S10. CVs showing UOR activity of Ni_2O_3 catalyst in different molar KOH solution containing 0.150 M urea acquired at various scan rates, 10 - 150 mV s⁻¹ (a) 3 M KOH, (b) 4 M KOH, (c) 6 M KOH and (d) 8 M KOH.

Figure S11. CVs of (a) NiO, (b) magnified view, (c) Ni_2O_3 (d) magnified view, in 1 to 8 M KOH at a scan rate of 10 mV s⁻¹.

Table S3. Applied potential values at which the Z_{real} (real impedance) showing positive and negative values at different concentrations of KOH electrolyte solution containing 0.150 M urea for NiO and Ni₂O₃.

NiO												
1 M K0	OH +0.150 N	A Urea	3 M K	OH +0.150 I	A Urea	6 M K	6 M KOH +0.150 M Urea					
Positive	Negative	Positive	Positive	Negative	Positive	Positive	Negative	Positive				
Z _{real}	Z _{real} (Mid	Z _{real}	Z _{real}	Z _{real} (Mid	Z _{real}	Z _{real}	Z _{real} (Mid	Z _{real}				
(Lower	potential)	(Higher	(Lower	potential)	(Higher	(Lower	potential)	(Higher				
potential)		potential)	potential)		potential)	potential)		potential)				
0.34 V	0.48 V	0.56 V	0.30 V	0.40 V	0.52 V	0.26 V	0.36 V	0.48 V				
0.36 V	0.52 V	0.58 V	0.34 V	0.44 V	0.56 V	0.30 V	0.38 V	0.52 V				
0.38 V		0.60 V	0.36 V	0.48 V	0.58 V	0.34 V	0.40 V	0.56 V				
0.40 V		0.64 V	0.38 V		0.60 V		0.44 V	0.58 V				
0.44 V					0.64 V			0.60 V				
								0.64 V				
				Ni ₂ O ₃								
1 M K0	OH +0.150 N	A Urea	3 M KOH +0.150 M Urea			6 M KOH +0.150 M Urea						
Positive	Negative	Positive	Positive	Negative	Positive	Positive	Negative	Positive				
Z _{real}	Z _{real} (Mid	Z _{real}	Z _{real}	Z _{real} (Mid	Z _{real}	Z _{real}	Z _{real} (Mid	Z _{real}				
(Lower	potential)	(Higher	(Lower	potential)	(Higher	(Lower	potential)	(Higher				
potential)		potential)	potential)		potential)	potential)		potential)				
0.34 V	0.48 V	0.64 V	0.30 V	0.36 V	0.52 V	0.26 V	0.38 V	0.50 V				
0.36 V	0.50 V		0.32 V	0.38 V	0.56 V	0.30 V	0.40 V	0.52 V				
0.38 V	0.52 V		0.34 V	0.40 V	0.58 V	0.32 V	0.44 V	0.56 V				
0.40 V	0.56 V			0.44 V	0.60 V	0.34 V	0.48 V	0.58 V				
0.44 V	0.58 V			0.50 V	0.64 V	0.36 V		0.60 V				
	0.60 V							0.64 V				

Table S4. Frequency range at which the –phase angle between (+90° to +180°) and (–90° to -180°) for NiO and Ni₂O₃ in different molar KOH solution containing 0.150 M urea.

NiO											
1 M KOH +0.	150 M Urea	3 M KOH +0.1	50 M Urea	6 M KOH +	0.150 M Urea						
Potential @ - Phase angle between (+90° to +180°) and (- 90° to -180) 0.48 V	Frequency Range (Hz) (No. Of data points) $10^{-0.50} - 10^{-2.0}$	Potential @ - Phase angle between (+90° to +180°) and (-90° to -180) 0.40 V	Frequency Range (Hz) (No. Of data points) 10 ^{-0.83} - 10 ^{-2.0}	Potential @ - Phase angle between (+90° to +180°) and (- 90° to -180) 0.36 V	Frequency Range (Hz) (No. Of data points) 10 ^{-0.33} - 10 ^{-2.0}						
	(18 out of 19)		(12 out of 15)		(21 out of 22)						
0.52 V	$10^{0.42} - 10^{-2.0}$ (28 out of 30)	0.44 V	10 ^{0.58} - 10 ^{-2.0} (30 out of 32)	0.38 V	10 ^{0.58} - 10 ^{-2.0} (30 out of 32)						
		0.48 V	10 ^{0.75} - 10 ^{-2.0} (32 out of 34)	0.40 V	10 ^{0.67} - 10 ^{-2.0} (32 out of 33)						
				0.44 V	10 ^{0.67} - 10 ^{-2.0} (31 out of 33)						
		Ni ₂ (D_3								
<i>1 M KOH +0.</i>	150 M Urea	3 M KOH +0.1	50 M Urea	6 M KOH +	0.150 M Urea						
Potential $@$ -Phase angle between (+90° to +180°) and (-90° to -180)	Frequency Range (Hz) (No. Of data points)	Potential $@$ - Phase angle between (+90° to +180°) and (-90° to -180)	Frequency Range (Hz) (No. Of data points)	Potential $@$ -Phase angle between (+90° to +180°) and (-90° to -180)	Frequency Range (Hz) (No. Of data points)						
0.48 V	10 ^{-1.5} - 10 ^{-2.0} (6 out of 7)	0.36 V	$\frac{10^{-1.83} - 10^{-2.0}}{(1 \text{ out of 3})}$	0.38 V	10 ^{-0.25} - 10 ^{-2.0} (20 out of 22)						
0.50 V	10 ^{-0.92} - 10 ^{-2.0} (4 out of 14)	0.40 V	10 ^{-1.33} - 10 ^{-2.0} (1 out of 8)	0.40 V	10 ^{0.25} - 10 ^{-2.0} (27 out of 28)						
0.52 V	10 ^{-0.92} - 10 ^{-2.0} (5 out of 14)	0.44 V	10 ^{-1.25} - 10 ^{-2.0} (6 out of 10)	0.44 V	10 ^{0.25} - 10 ^{-2.0} (26 out of 28)						
0.56 V	10 ^{-1.2} - 10 ^{-2.0} (3 out of 12)	0.50 V	10 ^{-1.67} - 10 ^{-2.0} (1 out of 5)	0.48 V	10 ^{-0.338} - 10 ^{-2.0} (13 out of 21)						
0.58 V	10 ^{-0.42} - 10 ^{-2.0} (3 out of 17)										
0.60 V	10 ^{-0.083} - 10 ^{-2.0} (4 out of 24)										

Figure S12. Equivalent circuit for modeling electrochemical urea oxidation on NiO and Ni_2O_3 catalyst

Table S5. Impedance analysis of NiO and Ni_2O_3 in different molar KOH + 0.150 M urea at various potentials. Fitted values based on equivalent circuit given in Fig. S12.

1 M KOH +0.150 M Urea - NiO											
Potential	Rs	R1	R2	СРЕ 2-Т	CPE2-P	CPE 1-T	CPE1-P	X ²			
(V)											
0.34 V	16.91	1049	15862	3.5147x10 ⁻⁵	0.7506	1.1108x10 ⁻⁵	0.89986	0.0045955			
0.36 V	17.01	885.4	5173	3.5966x10 ⁻⁵	0.75759	1.3828x10 ⁻⁵	0.88649	0.0047585			
0.38 V	17.04	602.9	2230	4.6456x10 ⁻⁵	0.72061	1.6851x10 ⁻⁵	0.8753	0.00054159			
0.40 V	17.18	398.6	1456	5.8542x10 ⁻⁵	0.6969	1.9839x10 ⁻⁵	0.86265	0.00063567			
0.44 V	17.66	120.6	1105	0.00010239	0.62763	3.0932x10 ⁻⁵	0.83841	0.0015716			
0.58 V	19.64	95.17	261.7	0.00019189	0.75729	6.4848x10 ⁻⁵	0.7687	0.00033661			
0.60 V	22.21	90.24	130	0.00030362	0.76997	7.5764x10 ⁻⁵	0.75782	0.0009636			
0.64 V	21.65	83.86	84.18	0.00056158	0.73407	5.2012x10 ⁻⁵	0.79541	0.0014511			
3 M KOH +0.150 M Urea - NiO											
Potential	Rs	R1	R2	СРЕ 2-Т	CPE2-P	CPE 1-T	CPE1-P	X ²			
	(0.45	4(0.1	4005	0.00012750	0.(21	1 7205-10-5	0.00(12	0.00072724			
0.30 V	0.945	409.1	4905	0.00012/59	0.031	1.7395X10°	0.90015	0.000/2/24			
0.34 V	7.154	0/.5/	925.1	0.00050303	0.43/0/	2.184/X10 ⁻⁵	0.89958	0.00080555			
0.36 V	7.4/8	103.3	1/2./	0.00054412	0.47434	$3.30/6X10^{-5}$	0.80825	0.00099556			
0.38 V	7.689	114.2	1337	0.00063086	0.43544	6.6862x10 ⁻⁵	0.8177	0.00098234			
0.56 V	8.692	5.662	96.22	0.00053111	0.48474	3.980/x10 ⁻³	0.87806	0.0011283			
0.58 V	6.929	4.648	118.8	0.00064334	0.42441	3.3455x10-3	0.9104	0.0090712			
0.60 V	8.782	15.83	210	0.0002179	0.49499	5.2896x10-3	0.86049	0.001484			
			6	0 M KOH +0.150	M Urea - Ni	0					
Potential (V)	Rs	R1	R2	CPE 2-T	CPE2-P	CPE 1-T	CPE1-P	X ²			
0.26 V	6.577	304.3	2995	0.00011708	0.57674	1.6717x10 ⁻⁵	0.90207	0.0016707			
0.30 V	6.573	30.23	500.7	0.0011774	0.29438	2.5277x10 ⁻⁵	0.89934	0.00043351			
0.56 V	8.309	14.7	48.35	0.0010913	0.57447	5.3966x10 ⁻⁵	0.86552	0.00082237			
0.60 V	6.827	29.7	100.1	0.00045578	0.69883	0.00011506	0.81544	0.001859			
0.64 V	9.064	45.04	81.48	0.00037345	0.77176	0.00011919	0.79132	0.0013519			

<i>1 M KOH</i> +0.150 <i>M Urea</i> - Ni ₂ O ₃											
Potential (V)	Rs	R1	R2	CPE 2-T	CPE2-P	CPE 1-T	CPE1-P	X ²			
0.34 V	15.71	5.171	3093	7.6662x10 ⁻⁵	0.69995	1.4029x10 ⁻⁵	0.9	0.007714			
0.36 V	15.12	25.45	330.7	9.0468x10 ⁻⁵	0.51064	0.0001492	0.75629	0.00044331			
0.38 V	15.95	18.45	175.8	0.00035398	0.42557	0.0001845	0.73621	0.00037078			
0.40 V	17.44	14.23	141.7	0.001319	0.25331	0.00027166	0.69177	0.00047962			
<i>3 M KOH</i> +0.150 <i>M Urea</i> - Ni ₂ O ₃											
Potential	Rs	R1	R2	CPE 2-T	CPE2-P	CPE 1-T	CPE1-P	X ²			
(V)											
0.30 V	8.172	810.9	938.4	6.7161x10 ⁻⁶	0.97826	4.3225x10 ⁻⁵	0.85938	0.0023386			
0.32 V	8.382	289.4	265	0.024806	0.2771	9.0863x10 ⁻⁵	0.83638	0.00059987			
0.34 V	8.764	146.4	167.8	0.014057	0.36648	0.00012378	0.81022	0.00047635			
0.36 V	9.086	82.8	423.7	0.0077401	0.28471	0.00014571	0.79912	0.00067774			
0.52 V	9.031	62.02	116.3	0.0028073	0.62939	0.00014907	0.81125	0.0015202			
0.64 V	9.477	96.66	87.49	0.0018702	0.63294	8.1524x10 ⁻⁵	0.83062	0.0011168			
			6 1	М КОН +0.150	<i>M Urea -</i> N	Ni ₂ O ₃					
Potential	Rs	R1	R2	CPE 2-T	CPE2-P	CPE 1-T	CPE1-P	X ²			
(V)											
0.26 V	6.397	1722	8568	2.326x10 ⁻⁵	0.67276	2.1197x10 ⁻⁵	0.89634	0.0047241			
0.30 V	6.592	149.5	404.1	0.023626	0.23921	9.0437x10 ⁻⁵	0.83869	0.00050143			
0.32 V	6.853	98.79	373	0.012254	0.25069	0.00012521	0.81615	0.00143190			

Figure S13. TEM image of Ni_2O_3 after 25 hours of *i*-t measurement

Figure S14. (a) HAADF image of Ni_2O_3 in STEM mode after i-t measurement for 25 hours showing (b) nickel, (c) oxygen from Ni_2O_3 and (d) fluorine from Nafion binder.

Figure S15. EDS analysis of Ni₂O₃ catalyst after 25 hours of *i*-t measurement.

Computational Details:

All the spin polarized calculations were performed within the framework of density functional theory (DFT) using the plane-wave technique as implemented in Vienna Ab Initio Simulation Package (VASP)². The exchange-correlation energy was accounted within the generalized gradient approximation method (GGA) parameterized by the Perdew-Burke-Ernzerhof (PBE)³. The projector augmented wave potential (PAW) was used to treat the ion-electron interactions. The DFT-D2 empirical correction method proposed by Grimme was used for describing the effect of Vander Waals interactions⁴. To account for the on-site

coulomb repulsion, the Hubbard correction parameter U term (DFT+U method) was used to improve the description of localized Ni *d*-electrons in the NiO and Ni₂O₃ surfaces with U_{eff} = 6.45 as recommended by the previous studies⁵⁻⁶. In all computations, the kinetic energy cut off is set to be 500 eV in the plane-wave expansion. All the structures were fully relaxed (lattice constant and atomic position) using the conjugated gradient method and the convergence threshold was set to be 10⁻⁴ eV in energy and 0.01 eV/Å in force. For geometry optimization, the Brillouin zone was sampled using a 3×3×1 Monkhorst-Pack k-point mesh. In order to calculate the charge transfer between different adsorbates and surfaces, we performed Bader charge-population analysis⁷⁻⁸. For geometry optimization of the small molecules namely CO₂ and urea (CO(NH₂)₂) in gas phase we used B3LYP/6-31+G (d, p) method as implemented in Gaussian 16⁹. The adsorption energies (E_{ad}) of the adsorbates namely OH, CO₂ and CO(NH₂)₂ on various surfaces could be defined as

$$E_{ad} = E_{surface+adsorbate} - E_{surface} - E_{adsorbate}$$
(1)

where $E_{surface+adsorbate}$ and $E_{surface}$ are the energies of adsorbate adsorbed surfaces and pristine surfaces respectively while $E_{adsorbate}$ is the energy of the adsorbate.¹⁰⁻¹¹

According to HRTEM analysis, the surface exposed planes for NiO and Ni₂O₃ surfaces are (111) and (002) respectively. In order to model polar NiO (111) surface, we have considered two type of surface terminations namely Ni-terminated and O-terminated surfaces as suggested by earlier studies.^{4,11} The modeled rectangular periodic surface slab (11.55 × 8.87 Å²) of Ni-terminated NiO (111) surface consists of 132 atoms while O-terminated surface slab (12.06 × 8.73 Å²) consists of 154 atoms. On the contrary, Ni₂O₃ (002) surface with one stable Ni-O termination was constructed with a rectangular periodic (3×2) surface slab (13.03 × 9.22 Å²) of 120 atoms. To avoid the spurious interactions between the neighbouring slabs, a vacuum layer of 20 Å was used in the direction perpendicular to the surfaces (along Z-direction) and the nearest distance between the two adsorbed molecules in the adjacent supercell is ~12 Å.

Figure S16. Optimized structures of different in-situ generated hydroxylated surfaces (a) Niterminated NiO (111), (b) O-terminated NiO (111), (c) Ni₂O₃ (002).

Figure S17. Optimized structures and corresponding charge density difference (CDD) plots of O-terminated NiO (111) surfaces (a-b) urea adsorbed, (c-d) CO_2 adsorbed surfaces. Isodensity value at surfaces is ± 0.004 e/a.u.³ (positive: cyan and negative: olive) of CDD.

Steps	Reactions
1	$NiOOH + CO(NH_2)_2 \rightarrow [NiOOH.CO(NH_2)_2]_{ads}$
2	$[\text{NiOOH.CO}(\text{NH}_2)_2]_{\text{ads}} + \text{OH}^- \rightarrow [\text{NiOOH.CO}(\text{NH}_2 \cdot \text{NH})]_{\text{ads}} + \text{H}_2\text{O} + \text{e}^-$
3	$[NiOOH.CO(NH_2 \cdot NH)]_{ads} + OH^- \rightarrow [NiOOH.CONH_2N]_{ads} + H_2O + e^-$
4	$[NiOOH.CONH_2N]_{ads} + OH^- \rightarrow [NiOOH \cdot CONHN]_{ads} + H_2O + e^-$
5	$[\text{NiOOH} \cdot \text{CONHN}]_{ads} + \text{OH}^- \rightarrow [\text{NiOOH} \cdot \text{CO} \cdot \text{N}_2]_{ads} + \text{H}_2\text{O} + \text{e}^-$
6	$[\text{NiOOH} \cdot \text{CO} \cdot \text{N}_2]_{ads} + \text{OH}^- \rightarrow [\text{NiOOH} \cdot \text{CO} \cdot \text{OH}]_{ads} + \text{N}_2 + \text{e}^-$
7	$[\text{NiOOH} \cdot \text{CO} \cdot \text{OH}]_{\text{ads}} + \text{OH}^- \rightarrow [\text{NiOOH} \cdot \text{CO}_2]_{\text{ads}} + \text{H}_2\text{O} + \text{e}^-$
8	$[NiOOH \cdot CO_2]_{ads} \rightarrow NiOOH + CO_2$

Table S6. Reaction pathway for electrochemical urea oxidation

*Ref¹²

Table S7. Adsorption energies of NiO and Ni_2O_3 catalsyt for OH, urea and CO_2

Sample	OH adsorption energy	Urea adsorption energy	CO ₂ adsorption
			energy
NiO	-0.75 eV	-0.14 eV	-0.98 eV
Ni ₂ O ₃	-0.98 eV	-0.85 eV	-0.45 eV

Table S8. Performance comparison of UOR using Nickel-based catalyst

SI.	Catalyst and	Synthesis method	Electrolyte	Onset potential	Tafel slope	Current density	Stabilit	Ref
No	base electrode		KOH + Urea		(mV/dec)	(mA cm ⁻²)	У	
1.	MnO ₂ /MnCo ₂ O ₄	Hydrothermal	1 M + 0.5 M	1.33 V vs. RHE	72 mV/dec	10	15 h	13 J. Mater.
	on Nickel foam							Chem. A,
								2017, 5 , 3208.
2.	Ni ₂ P NF on	Hydrothermal	1 M + 0.5 M	0.38 V vs. SCE	49 mV/dec	Chronopotentio	8 h	14
	Carbon cloth			for 60 mAcm ⁻²		metry at 0.4 V		
						vs. SCE		
						(70mAcm ⁻²)		
3.	Ni-Sn sulfide on	Hydrothermal	1 M + 0.33 M	1.36 V vs. RHE	32.2	10	12 h	15
		followed by alkaline						

	Carbon paper	solution etching		for 10 mAcm ⁻²	mV/dec			
4.	MoP@NiCo – LDH on Nickel foam	Hydrothermal followed by electrodeposition	1 M + 0.5 M	1.392 V vs. RHE for 100 mAcm ⁻²	40 mV/dec	100	20 h	16 J. Mater. Chem. A, 2020, 8 , 18106
5.	Porous Ni(OH) ₂ nanosheet on GCE	Microwave assisted synthesis	1 M + 0.33 M	1.82 V vs. RHE for 298 mAcm ⁻²	43 mV/dec	45	10 h	17
6.	α – Ni(OH) ₂ nanosheets on Carbon cloth	Hydrothermal	1 M + 0.33 M			300 mAcm ⁻² degraded to 175 mAcm ⁻² in 10 h	10 h	18
7.	LaNiO₃ on GCE	Reverse phase hydrolysis	5 M + 0.33 M	0.40 V vs. Hg/HgO		600 mAg ⁻¹ degraded to 150 mAg ⁻¹ in 1200 seconds	1200 s	19
8.	Ni _{1.5} Mn _{1.5} O ₄ on GCE	Hydrothermal	1 M + 0.33 M	0.29 V vs. Ag/AgCl		20	1000 s	20
9.	CNT/C@FeNi on Carbon paper	Pyrolysis	1 M + 60 mM		33 mV/dec	0.85	3 h	21
10.	2D MOF – Ni on GCE	Sonication assisted solution method	1 M + 0.33 M	1.36 V vs. RHE for 10 mAcm ⁻²	23 mV/dec	20	10 h	22
11.	3D — Ni _x Co _{2-x} P /C@HCN on Carbon cloth	Hydrothermal followed by carbonization and phosphorization	1 M + 0.33 M	1.33 V vs. RHE for 10 mAcm ⁻²	74.6 mV/dec	40	6 h	23
12.	β – NiMoO₄ on Carbon cloth	Hydrothermal	1 M + 0.5 M	1.36 V vs. RHE	48 mV/dec	20	30 h	24 ACS Appl. Energy Mater., 2020, 3 , 7535
13.	C@NiO on GCE	Hydrothermal followed by pyrolysis	1 M + 0.33 M	1.36 V vs. RHE for 10 mAcm ⁻²	87.2 mV/dec	0.015	1800 s	25
14.	Ni ^o rich –Ni/NiO Grown on Nickel Foam	Ar/H ₂ annealing	1 M + 0.33 M	1350 mV vs. RHE		50	20 h	26 <i>.Appl. Surf.</i> <i>Sci.</i> , 2019, 496 , 143710
15.	Rh-NCs/NiO-NSs on GCE	Mixed cynogels- NaBH4 method	1 M + 0.33 M	1.55 V vs .RHE for 616 mAg ⁻¹	36.6 mV/dec	50 mA/g	6000 s	27
16.	Ni-WOx on Nickel foam	Coprecipitation	1 M + 0.33 M	1.40 V vs. RHE for 100 mAcm ⁻²	39 mV/dec	100	10 h	28 Angew. Chemie - Int. Ed., 2021, 60, 10577
17.	Mn – Ni3S2 on Nickel foam	Hydrothermal	1 M + 0.5 M	1.303 V vs. RHE for 10 mAcm-2	41.7 mV/dec	50	5.5 h	29
18.	Ni ₂ O ₃ on GCE	Precipitation	1 M +	0.340 V vs.	21	25	25 h	This work
		method	0.150 M	Ag/AgCl	mV/dec			
				(1.36 V vs				
				RHE)				

In the above comparative table, NiO based catalysts with reported stability test ≥ 15 h are highlighted. It can be seen that the UOR performance parameter, Tafel slope, a measure of the kinetics, is the lowest obtained in our case compared to all the reported ones. The urea concentration is also quite low, 0.15 M in the present case. Only one catalyst has reported stability for 30 h but still possesses higher Tafel slope and lower current density than Ni₂O₃. A few catalysts have reported higher current density ≥ 50 mA/cm², but it may be noted that such higher current density is observed only for catalysts grown on Ni foam electrodes, which itself contribute to the performance largely.

References

- C. C. L. McCrory, S. Jung, J. C. Peters and T. F. Jaramillo, *J. Am. Chem. Soc.*, 2013, 135, 16977–16987.
- 2 G. Kresse and J. Hafner, *Phys. Rev. B* 1993, 47, 558.
- 3 J. P. Perdew, K. Burke, M. Ernzerhof, *Phys. Rev. Lett*, 1996, 77, 3865
- 4 S. Grimme, J. Comput. Chem, 2006, 27, 1787-1799.
- 5 W. Zhao, M. Bajdich, S. Carey, A.Vojvodic, J. K. Nørskov and C.T. Campbell, ACS Catal. 2016, 6, 11, 7377-84.
- 6 L. Wang, T. Maxisch and G. Ceder, *Phys. Rev. B*, 2006, **73**, 195107.
- R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford University Press, Oxford,1990).
- 8 G. Henkelman, A. Arnaldsson and H. Jónsson, *Comput. Mater. Sci*, 2006, **36**, 354–360.
- 9 M. J. Frisch, et al., Gaussian 16, revision C.01; Gaussian, Inc.: Wallingford, CT, 2016.
- R. Jana, C. Chowdhury, S. Malik, and A. Datta, ACS Appl. Energy Mater, 2019, 2, 5613–5621.
- 11 R. Jana, A. Datta and S. Malik, *Chem. Commun*, 2021, 57, 4508-4511.
- S. Lu, M. Hummel, S. Kang, R. Pathak, W. He, X. Qi and Z. Gu, ACS Omega. 2021, 6, 22, 14648-14654.
- C. Xiao, S. Li, X. Zhang and D. R. MacFarlane, J. Mater. Chem. A, 2017, 5, 7825– 7832.
- D. Liu, T. Liu, L. Zhang, F. Qu, G. Du, A. M. Asiri and X. Sun, J. Mater. Chem. A, 2017, 5, 3208–3213.
- 15 Z. Ji, J. Liu, Y. Deng, S. Zhang, Z. Zhang, P. Du, Y. Zhao and X. Lu, J. Mater. Chem. A, 2020, 8, 14680–14689.
- T. Wang, H. Wu, C. Feng, L. Zhang and J. Zhang, J. Mater. Chem. A, 2020, 8, 18106– 18116.

- W. Yang, X. Yang, B. Li, J. Lin, H. Gao, C. Hou and X. Luo, J. Mater. Chem. A, 2019, 7, 26364–26370.
- 18 C. Lin, Z. Gao, F. Zhang, J. Yang, B. Liu and J. Jin, J. Mater. Chem. A, 2018, 6, 13867–13873.
- 19 R. P. Forslund, J. T. Mefford, W. G. Hardin, C. T. Alexander, K. P. Johnston and K. J. Stevenson, ACS Catal., 2016, 6, 5044–5051.
- 20 S. Periyasamy, P. Subramanian, E. Levi, D. Aurbach, A. Gedanken and A. Schechter, ACS Appl. Mater. Interfaces, 2016, 8, 12176–12185.
- 21 A. Modak, R. Mohan, K. Rajavelu, R. Cahan, T. Bendikov and A. Schechter, ACS Appl. Mater. Interfaces, 2021, 13, 8461–8473.
- 22 D. Zhu, C. Guo, J. Liu, L. Wang, Y. Du and S. Z. Qiao, *Chem. Commun.*, 2017, 53, 10906–10909.
- 23 S. Rezaee and S. Shahrokhian, *Nanoscale*, 2020, **12**, 16123–16135.
- 24 K. Hu, S. Jeong, G. Elumalai, S. Kukunuri, J. I. Fujita and Y. Ito, ACS Appl. Energy Mater., 2020, 3, 7535–7542.
- S. Lu, M. Hummel, Z. Gu, Y. Wang, K. Wang, R. Pathak, Y. Zhou, H. Jia, X. Qi, X. Zhao, B. Bin Xu and X. Liu, ACS Sustain. Chem. Eng., 2021, 9, 1703–1713.
- 26 B. Zhang, S. Wang, Z. Ma and Y. Qiu, *Appl. Surf. Sci.*, 2019, **496**, 143710.
- 27 G. Ma, Q. Xue, J. Zhu, X. Zhang, X. Wang, H. Yao, G. Zhou and Y. Chen, *Appl. Catal. B Environ.*, 2020, 265, 1–9.
- 28 L. Wang, Y. Zhu, Y. Wen, S. Li, C. Cui, F. Ni, Y. Liu, H. Lin, Y. Li, H. Peng and B. Zhang, Angew. Chemie Int. Ed., 2021, 60, 10577–10582.
- 29 H. Yang, M. Yuan, Z. Sun, D. Wang, L. Lin, H. Li and G. Sun, ACS Sustain. Chem. Eng., 2020, 8, 8348–8355.