Supporting Information

Pseudocapacitive Porous Hard Carbon Anode with Controllable

Pyridinic Nitrogen and Thiophene Sulfur Co-doping for High-

power Dual-carbon Sodium Ion Hybrid Capacitors

Chong Wang, ^a Ning Zhao, ^a Bohan Li, ^a Qingtao Yu, ^a Wanci Shen, ^a Feiyu Kang, ^{a,b} Ruitao Lv, ^{*a} and Zheng-Hong Huang ^{*a,b}

^a State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

^b Engineering Laboratory for Functionalized Carbon Materials, Shenzhen Key Laboratory for Graphene-based Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China

^c Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China

E-mail: zhhuang@mail.tsinghua.edu.cn

Fig. S1. The SEM images of (a) N-HC, (b) NS-pHC-0.337, (c) NS-pHC-0.674, (d) NS-

pHC-1.348. The scale bar is 200 nm.

Fig. S2. The SEM of (a) NS-pHC-Mg-0.337, (b) NS-pHC-Mg-0.674, (c) NS-pHC-Mg-

1.348. The scale bar is 200 nm.

Fig. S3. The XRD patterns of NS-pHC-Mg-x.

Fig. S4. (a) The XRD patterns of N-HC and NS-pHC-x. The calculated manner of R value for (b) NS-pHC-1.348 and (c) N-HC.

Fig. S5. The ratios of various configurations of nitrogen dopants for N-HC and NS-

pHC-x.

Fig. S6. The HRTEM (a) of NS-pHC-1.348. The HRTEM element distribution of (b)

carbon, (c) nitrogen, (d) oxygen and (e) sulfur.

Fig. S7. The HRTEM element distribution of (a) total elements and (b) Mg element in NS-pHC-1.348. (c) The map sum spectrum of total elements (The relative ratios of C, N, O were different from that obtained from XPS data because elemental mapping is less sensitive to the light elements with a small weight difference).

Fig. S8. The CV curves of first 3 cycles at 0.2 mV s⁻¹. (a) NS-pHC-0.337, (b) NS-pHC-0.674.

Fig. S9. The GCD curves of first 3 cycles at 0.05 A g⁻¹. (a) N-HC, (b) NS-pHC-0.337, (c)

NS-pHC-0.674, (d) NS-pHC-1.348.

Fig. S10. The GCD curves at different current densities. (a) N-HC, (b) NS-pHC-0.337,

(c) NS-pHC-0.674, (d) NS-pHC-1.348.

Fig. S11. The CV curves at different scan speeds. (a) N-HC, (b) NS-pHC-0.337, (c) NS-

pHC-0.674, (d) NS-pHC-1.348.

Fig. S12. The capacitive contribution (blue dashed area) of (a) NS-pHC-0.337 and (b) NS-pHC-0.674 at 0.2 mV s⁻¹.

Fig. S13. The nitrogen adsorption/desorption curves of (a) NC and (b) NPC. The pore size distribution of (c) NC and (d) NPC. The rate performance (e) from 0.1 A g^{-1} to 20 A g^{-1} and GCD curve (f) at 0.1 A g^{-1} of NPC.

Sample	2 Theta ₍₀₀₂₎	SSA m ² g ⁻¹	Micropores size nm	Mesopores size nm	I _D /I _G
N-HC	24.9°	41.2	1.7	/	2.44
NS-pHC-0.337	25.3°	88.1	1.40	/	2.46
NS-pHC-0.674	25.3°	566.2	1.07	2-4	2.75
NS-pHC-1.348	25.5°	854.5	1.07	2-4	2.97

Table S1. The structural parameters of N-HC and NS-pHC-x samples.

Sample	Pyridinic N	Pyrrolic N	Quaternary N	C-S-C	Total N	Total S
	(at%)	(at%)	(at%)	(at%)	(at%)	(at%)
N-HC	4.68	4.42	1.95	0.39	12.07	0.78
NS-pHC-0.337	5.04	4.66	1.08	3.45	11.54	4.36
NS-pHC-0.674	4.98	4.35	0.87	5.52	11.02	6.11
NS-pHC-1.348	5.41	4.20	0.72	7.12	11.31	7.77

Table S2. The surface chemical state parameters of N-HC and NS-pHC-*x* samples.

 Table S3.
 The comparison of ICE and rate performance of NS-pHC-1.348 with those

reported in the literatures.

Sample	ICE	Capacity mAh g ⁻¹ (Current density A g ⁻¹)	Reference	
NS-pHC-1.348	49.99%	383.9 (0.05); 183.2 (20)	This work	
N, S co-doped nanoporous carbon	47.7%	322 (0.2); 172 (10)	[1] Energy Storage Mater 2018, 11 , 274-281.	
N, S co-doped carbon microspheres	≈80.8%	210 (0.1); 131 at (5)	[2] Adv Energy Mater 2016 6 , 1501929.	
S, N co-doped mesoporous hollow carbon spheres	29%	240 (0.5); 138 (30)	[3] Adv Energy Mater 2019, 9 , 1900036.	
S-enriched N doped multichannel hollow carbon nanofiber	62%	329 (0.05); 132 (10)	[4] <i>Small</i> 2018, 14 , e1802218.	
S-doped N-rich carbon nanosheets	≈43.9%	350 (0.05); 110 (10)	[5] Adv Mater 2017, 29 , 1604108.	
N, S co-doped porous carbon nanosheets	34.4%	294.6 (0.1); 176 (2)	[6] Chem Eng J 2019, 364 , 208-216.	
N, S co-doped graphene nanosheets	50.86%	400 (0.03); 141 (5)	[7] Energy Storage Mater 2018, 13 , 134-141.	

Sample	ICE	Capacity mAh g ⁻¹ (Current density A g ⁻¹)	Cycle (at 1 A g ⁻¹)	Capacity proportion below 0.1 V at 3 rd cycle at 0.05 A g ⁻¹	Capacitive behaviors proportion at 0.2 mV s ⁻¹
N-HC	48.81%	161.2 (0.05); 33.3 (20)	81.3 (102%)	52.9 (29.6%)	49.82%
NS-pHC-0.337	60.65%	241.3 (0.05); 88.9 (20)	169.7 (84.8%)	38.3 (13.9%)	72.04%
NS-pHC-0.674	54.96%	327.9 (0.05); 172.2 (20)	199 (79.5%)	46.2 (13.1%)	68.59%
NS-pHC-1.348	49.99%	383.9 (0.05); 183.2 (20)	287.2 (87.0%)	54.7 (11.7%)	70.19%

Table S4. The electrochemical property parameters of N-HC and NS-pHC-x.

REFERENCES

- 1 Y. Liu, Y. Qiao, G. Wei, S. Li, Z. Lu, X. Wang and X. Lou, Energy Storage Mater., 2018, **11**, 274-281.
- 2 D. F. Xu, C. J. Chen, J. Xie, B. Zhang, L. Miao, J. Cai, Y. H. Huang and L. N. Zhang, Adv. Energy Mater., 2016, **6**, 1501929.
- 3 D. Ni, W. Sun, Z. Wang, Y. Bai, H. Lei, X. Lai and K. Sun, Adv. Energy Mater., 2019, **9**, 1900036.
- 4 X. Sun, C. Wang, Y. Gong, L. Gu, Q. Chen and Y. Yu, Small, 2018, 14, e1802218.
- 5 J. Yang, X. Zhou, D. Wu, X. Zhao and Z. Zhou, Adv. Mater., 2017, **29**, 1604108.
- 6 X. Miao, D. Sun, X. Zhou and Z. Lei, Chem. Eng. J., 2019, 364, 208-216.
- 7 Y. Ma, Q. Guo, M. Yang, Y. Wang, T. Chen, Q. Chen, X. Zhu, Q. Xia, S. Li and H. Xia, Energy Storage Mater., 2018, **13**, 134-141.