Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Two-dimensional MOF based Liquid Marbles: Surface Energy Calculations and Efficient Oil-Water Separation Using a ZIF-9-III@PVDF Membrane

Haneesh Saini, Parashuram Kallem, Eva Otyepková, Florian Geyer, Andreas Schneemann, Vaclav Ranc, Fawzi Banat, Radek Zbořil, Michal Otyepka,*Roland A. Fischer* and Kolleboyina Jayaramulu*

1. Characterization

The synthesized materials were characterized by different techniques. X-ray diffraction (XRD) data of all samples were collected by the X'Pert PRO PANanalytical equipment (Bragg-Brentano geometry with automatic divergence slits, position sensitive detector, continuous mode, room temperature, Cu-Ka radiation, Ni filter. The powder samples were dropped onto silicon wafer with grease, and measured at the same equipment (5-80°, at a step of 0.0197°, with accumulation time 200 s per step). The morphology and porous nature characterized through scanning electron microscopy (FESEM-FEI Nova-Nano SEM-600) and transmission electron microscope (JEOL JEM-3010 with accelerating voltage at 300 kV). The Raman spectra were recorded in backscattering arrangement, using 532 nm laser excitation using 6 mW laser power. Transmission electron microscopy (TEM) including high-resolution TEM analysis was performed using a FEI Tecnai G2 microscope. Selected-areaelectron diffraction patterns (SAED) were analyzed and fast Fourier transform (FFT) patternswere processed by using the Gatan Digital Micrograph software. SEM analysis of fabricated membranes, a sample of the membrane piece was coated with a 10 nm gold/platinium layer using a sputtering coating machine, and the analysis was preformed via Quanta 250 ESEM. The water content after filtration was tested by Karl Fischer moisture analyzer (Metrohm 851 Titrando system). The X-ray diffraction patterns of as-synthesized bulk and exfoliated samples of MOF were refined using GSAS software to determine the phase purity.

2. Contact Angle Measurements

For measuring contact angles, ZIF-9-III powder was pressed and flattened on a tape using a spatula and ZIF-9-I were pressed using a P/O/Weber 40E press. Advancing contact angles were measured using a Data Physics OCA35 contact angle goniometer with Data Physics SCA 20 software. First, 6 μ L water droplets were deposited on the tablets. Afterwards, 15 μ L of water was added to and removed from the drop. The measurement was performed at least three different spots per tablet. The error of the advancing contact angle measurements was estimated to be ±4 degrees.

Fig. S1: (a-b) SEM (c) TEM images of bulk ZIF-9-III prepared through mechanochemical grinding

Discussion: Field emission scanning electron microscopy (FESEM) characterization reveals grinded bulk ZIF-9-III shows bundle of crystalline plates and Transmission electron microscopy (TEM) confirms the existence of stacked nanosheets

Table S1 Rietveld refinement parameters of bulk ZIF-9-III obtained from the powder diffraction data at room temperature. The numbers in parentheses are the estimated standard deviations of the last significant figure.

Compound	MOF
Space group	C2/c
composition	
a/Å	16.04(12)
b/Å	16.14(9)
c/Å	19.61(8)
V/Å ³	5063.91(5)
R _{wp}	2.73%
χ ²	1.5

Table S2 Rietveld refinement parameters of ZIF-9-III after exfoliation obtained from the powder diffraction data at room temperature. The numbers in parentheses are the estimated standard deviations of the last significant figure.

			Co	ompo	und			ZIF	-9-III	-Exf	oliate	d
			Sl	pace g	group			C2/c	;			
			co	mpos	ition							
			<i>a</i> /_	Å				15.8	7(6)			
			<i>b</i> /2	Å				16.1	8(12)			
			<i>c</i> / <i>I</i>	Å				19.4	2(18)			
			<i>V</i> /.	Å ³				4980	5.25(2	2)		
10 -	1	Ľ.	R _w	p	I			2.43	%			
∞ –			χ^2					1.2				
ensity 6 -			F									
- 4 Int				1								
~ -	****				an walkard	for the second	and which	where we	Manaphaphe	han an a	Madda and	un maria
0 -	***** ****				And and							
	-		-									

Fig. S2: Raman Spectrum of exfoliated ZIF-9-III

Discussion: Raman spectrum, where Co-N band is present at 464 cm-1. The Fig. shows clear existence of strong band 464 cm⁻¹.

Fig. S3: Optical photograph of a water droplet (6µL) on pressed pellet of ZIF-9-I phase, showing contact angle around $92 \pm 3^{\circ}$

Table S3: List of samples, their weights and specific surface areas.

Sample	Mass	Specific Surface
	(mg)	area
		(m²/g)
ZIF-9-I	6.4	450
ZIF-9-III	28.1	19

Discussion: The ZIF-9-1 is 3D structure with micro porous channels (Fig. 1a) and showing micro porous behavior having surface area around 450 m2/g with micro pore distribution, whereas ZIF-9-III phase non-porous two-dimensional layer with the surface area around 19 m2/g with meso pore distribution. These meso pores might be originated randomly ordered nanosheets ^[1]

Reference.

1.K. Jayaramulu, J. Masa, D.M. Morales, O. Tomanec, V. Ranc, M. Petr, P. Wilde, Y.-T. Chen, R. Zboril, W. Schuhmann, R.A. Fischer, Adv. Sci. 2018, 5, 1801029

Fig. S4. SEM images of PVDF membrane (a-b) bottom view (c-d) top view; (e) EDS analysis

Discussion:

The SEM images of prepared pristine PVDF and ZIF-9-III/PVDF membranes (Fig. 5 b-e and Fig. S4) resembles the standard ultrafiltration membranes with no defects. From the SEM images of ZIF-9-III/PVDF (Fig. 5 b-c), it is clearly seen that ZIF-9-III particles were dispersed uniformly

within the membranes. From the porosity measurements, it was observed that the bulk porosity decreased from $67.6 \pm 3\%$ of pristine PVDF membrane to $57.1 \pm 2\%$ of ZIF-9-III/PVDF membrane, thus it deteriorates the water flux slightly.

Fig. S5: EDS analysis of ZIF-9-III showing presence of Carbon, nitrogen, Cobalt, Oxygen and Fluorine elements of resultant membrane.

Fig. S6: Optical photograph of water droplet (6µL) on a PVDF membrane

Fig. S7: Optical photograph of a water droplet (6µL) on a ZIF-9-@PVDF membrane

Discussion: The wettability of pristine PVDF and ZIF-9-III@PVDF membrane surfaces were investigated by static water contact angle (WCA) measurements. As observed in Fig. S6, the water

droplet spread out on pristine PVDF membrane and the WCA decreased from $70 \pm 3^{\circ}$ to $58 \pm 3^{\circ}$ within 120 s. It was worth noting that the ZIF-9-III@PVDF membrane (Fig. S7) showed a WCA about $99 \pm 3^{\circ}$ and, after 120 s, the membrane presented WCA about $94 \pm 3^{\circ}$ with no deformation of droplet, indicating hydrophobicity.

Table S4 List of limiting values ($\nu \rightarrow 100\%$) of the total free surface energy ($\gamma_{1,t}$), its dispersive ($\gamma_{1,D}$) and acid-base ($\gamma_{1,AB}$) components (as percentage of the total surface free energy) and interfacial free energies of the ZIF-9-I and ZIF-9-III samples to water ($\gamma_{i,water}$) and n-hexane ($\gamma_{i,hexane}$)

Sample	Surface Area (m2/g)	^γ 1,t [mJ/m²]	γ _{1,AB} [%]	Υ1,D [%]	^γ i, _{water} [mJ/m²]	γ _{i,hexane} [mJ/m²]
ZIF-9-I	450	89 ± 4	11	89	34	31
ZIF-9-III	19	102 ± 6	9	91	42	38

Table S5: Compositions of the casting solutions used to fabricate MOF/PVDF membranes

Membrane code	PVDF	/DF PVP (wt%) ZIF-		NMP (wt%)
	(wt%)		(wt%)	
PVDF	16	2	0	82.0
ZIF-9-III@PVDF	16	2	2	81.84

*The percentage of **ZIF-9-III** is with respect to the total mass of PVDF in the casting solutions

Table S6: Oil-Water Se	paration efficiency	of PVDF and ZIF-9	-III@PVDF membranes

Membrane	Flux	Water content (ppm) in the	Rejection (%)
	$(L/m^2 h)$	permeate	
PVDF	17.5	960	74.02
ZIF-9-III@PVDF	14.3	6	99.8

Note: Water content in Oil/water emulsion of feed is 3724 ppm

Fig. S8. Optical photograph of oil droplet on ZIF-9-III/PVDF membrane (a) vegetable oil, (b) Heptane.

Fig. S9: Picture of oil/water emulsion (feed) and membrane purified oil (product).

Discussion: As shown in Fig. S9, the feed oil/water emulsion solution is non-transparent and become transparent (product) after permeating through ZIF-9-III@PVDF membrane.

Fig. S10: Adsorption capacity of the ZIF-9-III@PVDF membrane over ten subsequent cycles and clearly shows significant adsorption capacity after 10 cycles of adsorption of vegetable oil.

Membrane	Tensile strength (MPa)	Elongation at break (%)
Pristine PVDF	1.83	28.9
ZIF-9-III@PVDF	2.24	29.7

Table S7. Tensile properties of pristine PVDF and ZIF-9-III@PVDF membranes.

Discussion: Mechanical properties were measured using Instron, Model No. 5982, USA) by performing tensile strength tests on membrane strips to the breaking point. The results of the tensile strength properties of the membranes are listed in the Table. The addition of ZIF-9- III increased the tensile strength of the PVDF membrane from 1.83 MPa to 2.14 MPa, while the elongation at break increased from 28.9% to 29.7%, indicating that ZIF-9- III may have contributed to the membrane's ability to withstand for long-term and harsh environments.

Fig. S11. Raman spectrum of ZIF-9@PVDF membrane showings Co-N bands at 468 cm⁻¹, shows its structural integrity after oil-water separation.

Table S8 Filtration performances of state-of the art membranes reported in the literature compared to this study for water-in-oil emulsions

Membrane	Separation	Adsorption	Ref
	efficiency	capacity (%)	
PVDF/SiO2-TMS -	-	6.5	1
trimethylsiloxane			
SiO ₂ -NP-decorated PVDF	99.95	-	2
CR-PBZ@CM	99.94	120	3
PBZ-SiO ₂ @MS	99.78	82	4
Fluorinated SiO ₂ -sprayed PVDF membrane	99.94	-	5
ZnO-Co ₃ O ₄ overlapped membrane	99.97	-	6
s-kaolin particles modified PAN composite membra	95	35	7
Tannin-metal complex@polyvinylidene fluoride (TA-Fe@PVDF)	99.5	-	8
PVDF/PDMS	99.81	-	9
Ultra-high molecular weight polytethylene	-	45	10
ZIF-9-III@PVDF	99.5	400	Current Work

References:

[1] J. Ju, T. Wang, Q. Wang, Journal of Applied Polymer Science 2015, 132.

[2] C. Wei, F. Dai, L. Lin, Z. An, Y. He, X. Chen, L. Chen, Y. Zhao, Journal of Membrane Science 2018, 555, 220.

[3] C.-T. Liu, P.-K. Su, C.-C. Hu, J.-Y. Lai, Y.-L. Liu, Journal of Membrane Science 2018, 546, 100.

[4] Y. Peng, Y. Liu, J. Dai, L. Cao, X. Liu, Separation and Purification Technology 2020, 240, 116592.

[5] J. Lin, F. Lin, R. Liu, P. Li, S. Fang, W. Ye, S. Zhao, Separation and Purification Technology 2020, 231, 115898.

[6] N. Liu, X. Lin, W. Zhang, Y. Cao, Y. Chen, L. Feng, Y. Wei, Scientific Reports 2015, 5, 9688.

[7] T. Zhang, C. Zhang, G. Zhao, C. Li, L. Liu, J. Yu, F. Jiao, Colloids and Surfaces A: Physicochemical and Engineering Aspects 2020, 602, 125158.

[8] J. Yang, L. Wang, A. Xie, X. Dai, Y. Yan, J. Dai, Surface and Coatings Technology 2020, 389, 125630.

[9] W. Miao, D. Jiao, C. Wang, S. Han, Q. Shen, J. Wang, X. Han, T. Hou, J. Liu, Y. Zhang, Journal of Water Process Engineering 2020, 34, 101121.

[10] S. Sun, L. Zhu, X. Liu, L. Wu, K. Dai, C. Liu, C. Shen, X. Guo, G. Zheng, Z. Guo, ACS Sustainable Chemistry & Engineering 2018, 6, 9866

Table S9: Comparative study of contact angle measurements and application of hydrophobicMOFs from literature.

S.	MOF	Linker	Hydrophobi	Cont	(Ad)/Abs	Remarks	Ref.
No.			city	act	orp-tion		
			Response	Angl	Capacity		
				e			
1	HFGO@Z	Highly Fluorinated	HFGO	162°-	150-600	Composite	[1]
	IF-8	Graphene Oxide		0º	wt%	Material	
		(HFGO)					
2	UHMOF-	4,4'{[3,5-	H ₂ L	176°	40–70	Membrane	[2]
	100	bis(trifluoromethyl)			wt%	Material	
		phenyl]azanediyl}d					
		ibenzoic acid (H ₂ L)					
3	NMOF-1	dialkoxyoctadecyl-	H ₂ OPE-C ₁₈	160°-	102	Powder	[3]
		oligo-(<i>p</i> -		162°	$cm^3 g^{-1}$		
		phenyleneethynyle			(C_6H_6)		
		ne)					
		dicarboxylate					
		(H ₂ OPE-C ₁₈)					
4	ZIF-67	2-Methylimidazole	Hydrophobic		67 g g ⁻¹	Magnetic	[4]
	derived		Functional		(Soybean	Carbon	
	carbon		Groups		oil)	Sponge	
	sponge						
5	ZIF-8/CN	2-methylimidazole	Surface	135°	58 wt%	Carbon	[5]
	foam		Roughness &			Nitride	
			Blocked			Foams	
			Nitrogen				

			Sites				
6	ZIF-8-	2-methylimidazole	Surface	120°	74–145	Sponges	[6]
	Sponge		Roughness &		times of		
			Blocked		its own		
			Hydrophilic		weight		
			Sites				
7	ZIF-7-	Benzimidazole &	ZIF-7 &	154.7		Array	[7]
	array &	2-methylimidazole	Micro/Nanos	0		Coatings	
	ZIF-7-300		cale Structure	151.3			
			of MOF array	0			
			coatings and				
8	UPC-21	H ₄ L ^[8]	H ₄ L	145 ±	196.5 cm ³	Crystals	[9]
				1°	g ⁻¹ at 273		
					$K(C_2H_2)$		
9	OPA-UiO-	2-NaSO ₃ -H ₂ BDC	Post	162°		Solid	[10]
	66-SO3H	tetrakis(4-	synthetic	&		Material	
	&OPA-	carboxyphenyl)-	modification	157°			
	PCN-222	porphyrin	(PSM) by				
		(H ₂ TCPP)	n-				
			octadecylpho				
			sphonic acid				
			(OPA)				
10	JUC-	Pyrazine	PSM by	143.6		Mesh	[11]
	150@PD		Polydimethyl	0			
	MS mesh		-siloxane				
			(PDMS)				
11	HZIF-8,	2-methylimidazole	Polystyrene	97°,	450 wt%	Powder	[12]
	NZIF-8 &		Template	67° &	Dichloro		
	CZIF-8			74°	methane		
12	MF-ZIF-8-	2-methylimidazole	Rough and	140°	3800 wt%	Sponge	[13]
	Sponge		Hydrophobic				

			ZIF-8 Layer				
13	ZIF-	2-methylimidazole	ZIF-8@rGO	171°	1400~290	Sponge	[14]
	8@rGO@		& Sponge		0 wt%		
	Sponge		Roughness				
14	MS-CMC-	2-(5-pyridin-4-yl-	2-(5-pyridin-	126.1	13,000%	Sponge	[15]
	HPU-13	2H-[1,2,4]triazol-3-	4-yl-2 <i>H</i> -	_			
		yl)pyrimidine	[1,2,4]triazol-	127.1			
			3-	0			
			yl)pyrimidine				
15	MOF(1) &	Imidazole-4,5-	Alkylpyridyl	129°		Nanosheets	[16]
	MOF(2)	dicarboxylic acid,	groups	&		& Powder	
		bpy and py		139°			
16	S-MIL-	terephthalic acid,	Octadecylami	156±	142-399	Powders	[17]
	101(Cr)	<u>benzene-1,3,5-</u>	ne	1°	wt%		
	S-	tricarboxylate, 2-		155±	118-325		
	HKUST-1	Methylimidazole		1°	wt %		
	S-UiO-66	and		154±	125-281		
	S-ZIF-67	Octadecylamine		1°	wt %		
				151±	122-341		
				1°	wt %		
17	UPC-29	H_2L_1 (consider ref.)	H_2L_1	178±		Crystals	[18]
				1°			
18	ZIF-8-SLE	2-methylimidazole	5, 6-	141.6		Mesh	[19]
	meshes	&	dimethyl-	±2°			
		5, 6-dimethyl-	benzimidazol				
		benzimidazole	e				
19	Co-	terephthalic acid	Carbon	156 °	85 to 200	Hybrid	[20]
	MOFs/CF		Foam,		times its	Monolith	
			Surface		own		
			Roughness of		weight		
			Co@C/CF				

20	ZNM-	Benzimidazole	Zn ₂ (bIm) ₄	152.5		Stainless	[21]
	SSM-2000		nanosheet	° &		Steel	
	&		material &	140°		Meshes	
	ZNM-		Surface				
	SSM-500		Roughness				
21	PDMS/Ti	2-	PDMS &	154.7		Cotton	[22]
	MOFs	aminoterephthalic	Roughness of	$\pm 0.7^{\circ}$		Fabric	
	@cotton	acid	Fabric				
	fabric		Surface				
22	HKUST-1	Trimesic acid	Trapped oil	152 ±		Mesh	[23]
	on copper	(H ₃ BTC)	of	2.5°			
	substrates		Nano/Micro	(Und			
			Structure	er			
				Hexa			
				ne)			
23	PS@ZIF-8	2-methylimidazole	Polystyrene	154°	2400-	Monolithic	[24]
	foam		(PS)		3900 wt%	Foam	
24	Zr(Hf)-	2,5-Dimercapto-	y=fluoroalkyl	154.4		Powder	[25]
	UiO-66-	1,4-		± 1°			
	SH-y	benzenedicarboxyli					
		c acid					
25	Eu-bdo-	H_4 bdo = 2,5-	Amylamine	32°	4517-	Aerogel	[26]
	СООН	bis(3,5dicarboxylp		142°	14,728 wt		
	AM-rGA	henyl)-1,3,4-			%		
		oxadiazole					
26	FG-	Trimesic acid	Fluorinated	147 ±	226-804	Composite	[27]
	HKUST-1	(H ₃ BTC)	Graphene	3°	wt %	Sponge	
27	Ni/C600	1,3,5-	Disappearanc	140.3		Aerogel	[28]
		benzenetricarboxyli	e of	0			
		c acid	Hydrophilic				
			groups by				

			pyrolysis				
28	UiO-66-	2-	Hydrophobic	151.7	32.3 to	Powder	[29]
	NH-C18	aminoterephthalic	alkyl chains	۰.	66.1 g/g		
		acid, triethylamine					
		and octadecanoyl					
		chloride					
29	MIL-	Trimesic acid	Residual	179°		Powder	[30]
	100(Fe)	(H ₃ BTC)	alkyl chain				
30	UiO-66-	BDC-NH ₂	Hydrophobic	138.7		Coating	[31]
	NH ₂ @NW		nano- thick	° at		Material	
	F-g-MAH		MOF coating	LBL-			
				4			
31	HKUST-	Trimesic acid	Hexadecanet	162.9		Metal	[32]
	1/HDT/CF	(H ₃ BTC)	hiol	1º		Foam	
32	ZIF-8-	2-methylimidazole	ZIF-8	153.1		Stainless-	[33]
	coated			°±		Steel	
	SSMs			2.0		Meshes	
	(ZFCMs)						
33	ZIF-L	2-methylimidazole	Rough	160°		Mesh	[34]
	coated		micro-/nano			Films	
	meshes		hierarchical				
			surface				
34	CuBTC/C	1,3,5-	Methylpolysi	156.2		Metal	[35]
	u(OH) ₂	benzenetricarboxyli	loxane	0		Mesh	
	NWM-	c acid (H ₃ BTC)	(PDMS)				
	PDMS						
35	SH-UiO-	2-	2-	163°	More than	Cotton	[36]
	66@CFs	trifluoroacetamidot	trifluoroaceta		2500 wt	Fiber	
		erephthalic acid	mido		%		
			terephthalic				
			acid				

36	UiO-66-F	BDC-NH ₂ &	Pentadecaflu	145°	163-351	Powder	[37]
		Pentadecafluoro-	oro-		wt%.		
		octanoylchloride	octanoylchlor				
			ide				
37	UiO-66-	4-fluorobenzoic	4-	150°	50.5-	Sponge	[38]
	1F(10)	acid	fluorobenzoic		107.8 g/g		
	@PDA@s		acid				
	ponge						
38	kgd-	3,5- bis((3'-	kgd-Zn seeds	130°	5077-	Foam	[39]
	Zn@MF	carboxylbenzyl)ox			1378 wt%		
		y)benzoic acid					
		(H ₃ bcoba)					
39	ZIF-	2-methylimidazole	Stearic acid	140.8	30.26-	Sponge	[40]
	8@SA		(SA)	0	115.35		
	@Sponge				times its		
					own		
					weight		
40	MFS-PC-	Trimesic acid	MOF derived	145 ±	10–17	Carbon	[41]
	MIL-100	(H ₃ BTC)	porous	6°	times its	Sponge	
	sponge		carbon		own		
					weight		
41	ZIF-	2-methylimidazole	ZIF-8	145°	15 - 30	Aerogel	[42]
	8@PLA				times its		
					own		
					weight		
42	ZIF-	Benzimidazole	ZIF-9	144	400 wt%	Membrane	curren
	9@PVDF						t work

References:

- [1] K. Jayaramulu, K. K. R. Datta, C. Rösler, M. Petr, M. Otyepka, R. Zboril, R. A. Fischer, *Angewandte Chemie International Edition* **2016**, *55*, 1178.
- [2] S. Mukherjee, A. M. Kansara, D. Saha, R. Gonnade, D. Mullangi, B. Manna, A. V. Desai, S. H. Thorat, P. S. Singh, A. Mukherjee, S. K. Ghosh, 2016, 22, 10937.
- [3] S. Roy, V. M. Suresh, T. K. Maji, *Chemical Science* 2016, 7, 2251.
- [4] K.-Y. Andrew Lin, H.-A. Chang, B.-J. Chen, *Journal of Materials Chemistry A* **2016**, *4*, 13611.
- [5] D. Kim, D. W. Kim, O. Buyukcakir, M.-K. Kim, K. Polychronopoulou, A. Coskun, *Adv. Funct. Mater.* **2017**, *27*, 1700706.
- [6] H. Zhu, Q. Zhang, B.-G. Li, S. Zhu, Advanced Materials Interfaces 2017, 4, 1700560.
- [7] G. Zhang, J. Zhang, P. Su, Z. Xu, W. Li, C. Shen, Q. Meng, Chem. Commun. 2017, 53, 8340.
- [8] M. Zhang, L. Zhang, Z. Xiao, Q. Zhang, R. Wang, F. Dai, D. Sun, Scientific Reports 2016, 6, 20672.
- [9] M. Zhang, X. Xin, Z. Xiao, R. Wang, L. Zhang, D. Sun, *Journal of Materials Chemistry* A 2017, 5, 1168.
- [10] Y. Sun, Q. Sun, H. Huang, B. Aguila, Z. Niu, J. A. Perman, S. Ma, *Journal of Materials Chemistry A* 2017, *5*, 18770.
- [11] Z. Kang, S. Wang, L. Fan, Z. Xiao, R. Wang, D. Sun, *Materials Letters* 2017, 189, 82.
- [12] P. Jing, S.-Y. Zhang, W. Chen, L. Wang, W. Shi, P. Cheng, *Chemistry A European Journal* **2018**, *24*, 3754.
- [13] Z. Lei, Y. Deng, C. Wang, Journal of Materials Chemistry A 2018, 6, 3258.
- [14] J. Gu, H. Fan, C. Li, J. Caro, H. Meng, *Angewandte Chemie International Edition* **2019**, 58, 5297.
- [15] Z. Xu, J. Wang, H. Li, Y. Wang, *Chemical Engineering Journal* 2019, 370, 1181.
- [16] J.-H. Deng, Y.-Q. Wen, J. Willman, W.-J. Liu, Y.-N. Gong, D.-C. Zhong, T.-B. Lu, H.-C. Zhou, *Inorganic Chemistry* 2019, 58, 11020.
- [17] M.-L. Gao, S.-Y. Zhao, Z.-Y. Chen, L. Liu, Z.-B. Han, *Inorganic Chemistry* **2019**, *58*, 2261.
- [18] M. Zhang, B. Guo, Y. Feng, C. Xie, X. Han, X. Kong, B. Xu, L. Zhang, *Inorganic Chemistry* 2019, 58, 5384.
- [19] X. Du, L. Fan, M. Zhang, Z. Kang, W. Fan, M. Wen, Y. Zhang, M. Li, R. Wang, D. Sun, Materials Research Bulletin 2019, 111, 301.
- [20] X. Ge, W. Qin, H. Zhang, G. Wang, Y. Zhang, C. Yu, Nanoscale 2019, 11, 12161.
- [21] C. Ma, Y. Li, P. Nian, H. Liu, J. Qiu, X. Zhang, *Separation and Purification Technology* **2019**, *229*, 115835.
- [22] Y. Yang, W. Huang, Z. Guo, S. Zhang, F. Wu, J. Huang, H. Yang, Y. Zhou, W. Xu, S. Gu, *Cellulose* 2019, 26, 9335.
- [23] J. Du, C. Zhou, Z. Yang, J. Cheng, Y. Shen, X. Zeng, L. Tan, L. Dong, *Surface and Coatings Technology* **2019**, *363*, 282.
- [24] C. Tan, M. C. Lee, M. Arshadi, M. Azizi, A. Abbaspourrad, *Angewandte Chemie International Edition* **2020**, *59*, 9506.
- [25] J. Du, L. Chen, X. Zeng, S. Yu, W. Zhou, L. Tan, L. Dong, C. Zhou, J. Cheng, ACS Applied Materials & Interfaces 2020, 12, 28576.
- [26] T. Sun, S. Hao, R. Fan, M. Qin, W. Chen, P. Wang, Y. Yang, ACS Applied Materials & Interfaces 2020, 12, 56435.

- [27] R. Yogapriya, K. R. D. Kasibhatta, ACS Applied Nano Materials 2020, 3, 5816.
- [28] Y. Su, Z. Li, H. Zhou, S. Kang, Y. Zhang, C. Yu, G. Wang, *Chemical Engineering Journal* **2020**, 402, 126205.
- [29] M. Shi, R. Huang, W. Qi, R. Su, Z. He, Colloids and Surfaces A: Physicochemical and Engineering Aspects **2020**, 602, 125102.
- [30] R. Wang, Y. Feng, H. Xu, Y. Zou, L. Fan, R. Zhang, Y. Zhou, *Materials Chemistry Frontiers* **2020**, *4*, 3086.
- [31] J. Gao, W. Wei, Y. Yin, M. Liu, C. Zheng, Y. Zhang, P. Deng, *Nanoscale* **2020**, *12*, 6658.
- [32] W. Zhang, S. Wei, W. Tang, K. Hua, C.-x. Cui, Y. Zhang, Y. Zhang, Z. Wang, S. Zhang, L. Qu, *New Journal of Chemistry* **2020**, *44*, 7065.
- [33] X. Gao, Q. Ma, Z. Jin, P. Nian, Z. Wang, New Journal of Chemistry 2020, 44, 13534.
- [34] T. Chen, A. Lewis, Z. Chen, X. Fan, N. Radacsi, A. J. C. Semiao, H. Wang, Y. Huang, *Separation and Purification Technology* **2020**, *240*, 116647.
- [35] J. Zhu, F. Zhao, T. Peng, H. Liu, L. Xie, C. Jiang, *Surface and Coatings Technology* **2020**, *402*, 126344.
- [36] R. Dalapati, S. Nandi, C. Gogoi, A. Shome, S. Biswas, *ACS Applied Materials & Interfaces* **2021**, *13*, 8563.
- [37] N. Yuan, X.-R. Gong, B.-H. Han, ACS Applied Nano Materials 2021, 4, 1576.
- [38] B. Yang, M. Shi, R. Huang, W. Qi, R. Su, Z. He, *Colloids and Surfaces A: Physicochemical and Engineering Aspects* **2021**, *616*, 126322.
- [39] S. Gai, R. Fan, J. Zhang, X. Zhou, K. Xing, K. Zhu, W. Jia, W. Sui, P. Wang, Y. Yang, *Journal of Materials Chemistry A* **2021**, *9*, 3369.
- [40] T. Azam, E. Pervaiz, S. Farrukh, T. Noor, *Materials Research Express* 2021, *8*, 015019.
- [41] M. Bauza, G. Turnes Palomino, C. Palomino Cabello, *Separation and Purification Technology* **2021**, *257*, 117951.
- [42] Y. Li, Q. Luo, X. Wang, Z. Duan, P. Lu, S. Li, D. Ji, Z. Wang, G. Li, D. Yu, W. Liu, Separation and Purification Technology 2021, DOI: https://doi.org/10.1016/j.seppur.2021.118794118794.