Electronic Supporting Information (ESI)

Chemomechanics in Ni–Mn Binary Cathode for Advanced Sodium-Ion Batteries

Hyungjun Kim^{a‡}, Myungkyu Kim^{a‡}, Shidong Park^a, Maenghyo Cho^{a*} and Duho Kim^{b*}

^a Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.

E-mail: mhcho@snu.ac.kr ^{b.} Department of Mechanical Engineering (Integrated Engineering Program), Kyung Hee University, 1732, Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea

E-mail: duhokim@khu.ac.kr

^{*‡*} These authors contributed equally

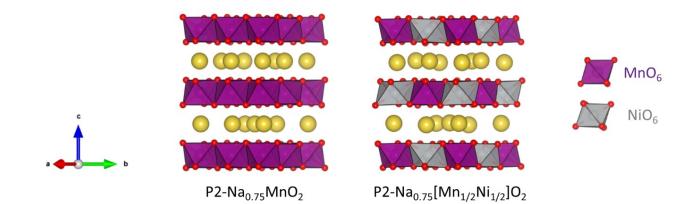


Figure S1. The atomic structures of P2-Na_{0.75}MnO₂ (left) and Na_{0.75}[Mn_{1/2}Ni_{1/2}]O₂ (right). TM layers in Na_{0.75}MnO₂ and Na_{0.75}[Mn_{1/2}Ni_{1/2}]O₂ are constituted by MnO₆ (purple octahedra) and MnO₆/NiO₆ (gray octahedra), respectively.

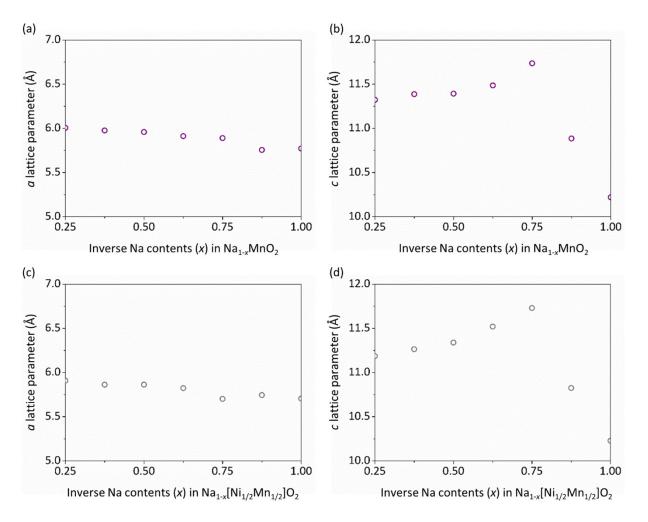
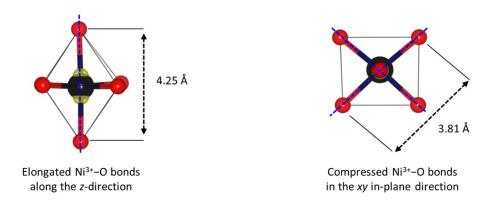



Figure S2. Calculated *a* and *c* lattice parameters with varying vacancy content (*x*) in (a-b) Na_{1-x}MnO₂ and (c-d) Na_{1-x}[Mn_{1/2}Ni_{1/2}]O₂ over the full range ($0.25 \le x \le 1.0$). *a* lattice parameters were calculated based on the average values of *a* and *b* lattice parameters at each vacancy content.

Figure S3. $Ni^{3+}O_6$ representing $Ni^{3+}O_6$ octahedra in $Na_{0.5}[Mn_{1/2}Ni_{1/2}]O_2$. The electron densities around Ni^{3+} atom are drawn in yellow. The spatial electron densities surrounding oxygen atoms are omitted. Blue dashed lines indicate the direction of $O-Ni^{3+}-O$ configurations consisting of $Ni^{3+}O_6$. The long $O-Ni^{3+}-O$ bond (left) shows the elongation of $Ni^{3+}-O$ bonds along *z*-direction, whereas short ones (right) does the compression of $Ni^{3+}-O$ bonds in the *xy* in-plane direction (right).

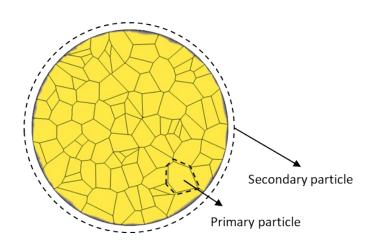


Figure S4. Illustration of primary and secondary particles.

Journal Name

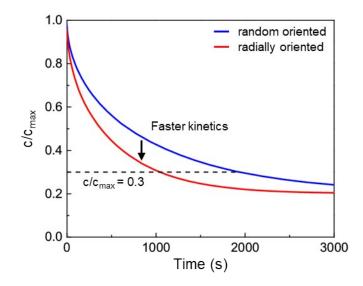


Figure S5. Na ions concentration change over time for the randomly oriented (blue) and the radially oriented (red) secondary particle during desodiation.

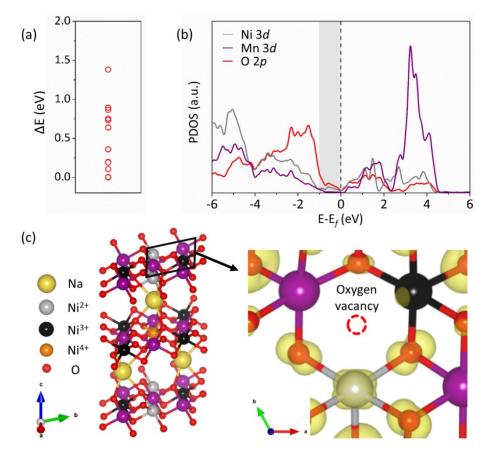


Figure S6. (a) The energy configuration of $Na_{0.25}[Mn_{1/2}Ni_{1/2}]O_2$ with a oxygen vacancy ($Na_{0.25}[Mn_{1/2}Ni_{1/2}]O_{1.875}$) corresponding to the high-voltage phase.¹ Based on the $Na_{0.25}[Mn_{1/2}Ni_{1/2}]O_{1.875}$ with the lowest formation energy, we constructed (b) combined graphs of PDOSs of Mn (purple) and Ni (gray) 3*d*-electron and O (red) 2*p*-electron and (c) calculated the spatial electron densities (yellow iso-surface) at -1.0 \leq E-E_f \leq 0.0. Red dashed circle highlights that Ni³⁺ and Ni⁴⁺ ions in Na_{0.25}[Mn_{1/2}Ni_{1/2}]O₂ are reduced to the Ni²⁺ and Ni³⁺, respectively, as oxygen vacancy is introduced.

Journal Name

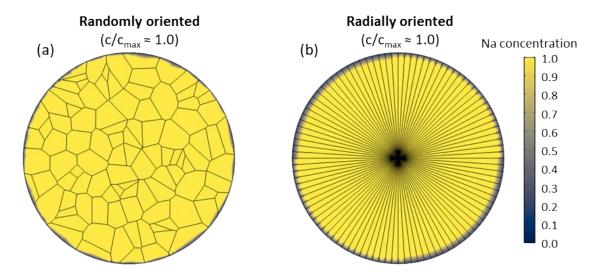


Figure S7. Concentration of Na ions for (a) the randomly oriented and (b) the radially oriented shape secondary particles at $c/c_{max} \approx 1.0$.

Parameter		Value
Particle radius		5 µm
Maximum Na concentration		58418 mol/m ³
Na diffusivity along <i>the ab</i> plane		7x10 ⁻¹⁵ m ² /s
Na diffusivity along the c lattice direction		7x10 ⁻¹⁶ m ² /s
Elastic constants	C ₁₁	222 GPa
	C ₁₂	77 GPa
	C ₁₃	36 GPa
	C ₃₃	245 GPa
	C ₄₄	26 GPa
	C ⁶⁶	72.5 GPa

Table S1. Parameters used in the finite element analysis.

References

1 D. Kim and J. Lee, *Chem. Mater.*, 2020, **32**, 5541–5549.