1. Experimental Section Chemicals and reagents.

Cobalt nitrate hexahydrate (98%, Aladdin), 2-methylimidazole (99%, J&K), methanol and ammonium molybdate (analytical grade, Tianjin Chemical Reagent Wholesale Company), KOH (analytical grade, Aladdin). Ultrapure water (Millipore, 18.25 M Ω cm) was used throughout all experiments. All chemicals were directly used without any purification.

Material synthesis

1.3 g 2-methylimidazole was dissolved in 40 ml deionized water and stirred for 2 h (Solution A). 0.58 g cobalt nitrate hexahydrate and 0.26 g ammonium molybdate were dissolved in 40 ml deionized water and continually stirred for 2 h (Solution B). Then, solution A was quickly poured into the solution B with further stirring for 5 min. A piece of acid-treated carbon cloth (CC) was added into the mixture solution. After reaction for 4 h, the sample was taken out, washed with deionized water and dried at 60°C under vacuum for 12 h (Co-ZIF-MoO₄/CC).

A piece of Co-ZIF-MoO₄/CC was firstly heated at 250°C with a ramp rate of 1°C min⁻¹ and kept at 250°C for 2 h under air atmosphere. Afterward, the calcined sample was putted into a tube furnace system and nitridation at 370°C, 420°C and 470°C for 2 h with a heating rate of 5°C min⁻¹ under an NH₃ atmosphere (30 sccm), the achieved samples were assigned to be Mo-Co₄N-N₃₇₀, Mo-Co₄N and Mo-Co₄N-N₄₇₀. Co₄N, Mo_{low}-Co₄N and Mo_{high}-Co₄N were prepared via the same procedure of Mo-Co₄N expect 0 g, 0.13 g and 0.39 g ammonium molybdate were added, respectively. The loading amount of Co₄N and Mo-Co₄N on carbon cloth were about 1.5 mg cm⁻². A

mixture of Pt/C (20 wt%, 2 mg), 40 μ l Nafion solution (5 wt%) and 960 μ l isopropanol was sonication for 2 h to form a homogenous dispersion, which was then loaded into a piece of carbon cloth with the loading of Pt/C catalyst was 0.5 mg cm⁻².

Materials Characterization.

X-ray diffraction (XRD) was conducted by using Cu Ka radiation (Rigaku D/Max-2500). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were performed with JEOL JSM-7500F and Talos F200X G2 AEMC instruments, respectively. X-ray photoelectron spectroscopy (XPS) was carried out by using a ThermoFischer ESCALAB 250Xi. The formate was detected by ion chromatography (IC, ThermoFischer Aquion). Inductive coupled plasma mass spectrometry (ICP-MS) was conducted to study the elemental composition using a SPECTRO-BLUE. X-ray absorption near-edge structure (XANES) tests were collected at the photoemission end-station at beamline BL10B in the National Synchrotron Radiation Laboratory (NSRL) in Hefei, China. All the XANES spectra were calibrated based on the Au 4f of a freshly sputtered gold wafer. All static calculations were carried out using DFT with generalized gradient approximation of Perdew-Burke-Ernzerhof as implemented in VASP 5.4.4 code.

Electrochemical Measurement.

The electrochemical measurements were performed by a CHI 760E electrochemical station (Shanghai Chenhua, China). The as-prepared samples, graphite rod and saturated calomel electrode (SCE) were used as work electrode, counter electrode and reference electrode, respectively. Linear sweep voltammetry (LSV) was

tested 5 mV s⁻¹ for the polarization curves. For double-layer capacitances (C_{dl}) measurements, different scanning rates of 5, 10, 15, 20, 25, 30, and 40 mV s⁻¹ of CV cycling in the range of non-faradic district were performed. The ECSA is acquired from the C_{dl} based on the equation:

$$ECSA = C_{dl}/C_s$$

where C_s is the specific capacitance of the catalyst. From the literature, the value of C_s was 0.040 mF cm⁻² in this work. The electrochemical impedance spectroscopy (EIS) measurements were collected with frequencies ranging from 100 KHz to 0.1 Hz. The above-mentioned electrochemical data was presented with 95% iR compensation. TOF values were measured and based on the following equation: TOF = j/(2Fn), in which j is the HER current density, n is the number of active sites, and F is Faraday constant. The n values were measured and computed by cyclic voltammetry (CV) recorded between 0-0.6 V vs RHE in 1 M KOH at a scan rate of 50 mV s⁻¹. Then, by integrating the charge of each CV curve over the whole potential range, the half value of the charge was obtained as the surface charge density (Q). The n value could be calculated by the follow equation: n = Q/F.

For the two-electrode HER/MOR electrolyzer, the as-prepared samples were used as both the anode and cathode. The Faraday efficiency (FE) of H_2 and formate can be calculated by the following equations:

$$FE(H_2) = \frac{n \times 2 \times N_A \times e}{Q} \times 100\%$$
$$FE(formate) = \frac{n \times 4 \times N_A \times e}{Q} \times 100\%$$

where n is the mol of generated H₂ or formate, N_A is Avogadro constant $(6.02 \times 10^{23} \text{ mol}^{-1})$, e is elementary charge (1.60×10⁻¹⁹ C), Q is the amount of electricity passed (C).

2. Supplementary Figures and Tables

Figure S1. SEM images of Co-ZIF/CC.

Figure S2. SEM images of Co-ZIF-MoO₄/CC.

Figure S3. XRD patterns of Co-ZIF and Co-ZIF-MoO₄.

Figure S4. SEM images of Co₄N.

Figure S5. TEM images of Co₄N.

Figure S6. XRD pattern of the as-prepared Mo-Co₄N scraped from carbon cloth substrate.

Figure S7. XPS survey spectra of (a) Co₄N and (b) Mo-Co₄N.

Figure S8. High resolution XPS spectra of Co 2p for Co₄N and Mo-Co₄N.

Figure S9. High resolution XPS spectra of N 1s for Co₄N and Mo-Co₄N.

Figure S10. TOF values of Co₄N and Mo-Co₄N for HER.

Figure S11. LSV curves of Mo-Co₄N with various dopant ratios for HER.

Figure S12. Calculated DOS of Co₄N and Mo-Co₄N and the corresponding d band center potentials.

Figure S13. LSV curves of Mo-Co₄N annealed at different temperatures for HER.

Figure S14. CV curves of a) Mo-Co₄N and b) Co₄N in the double layer capacitive region at the scan rates of from 5 mV to 40 mV s⁻¹.

Figure S15. ECSA normalized LSV curves for (a) HER and (b) MOR.

Figure S16. LSV curves of Mo-Co₄N with various dopant ratios for OER.

Figure S17. LSV curves of Mo-Co₄N annealed at different temperatures for OER.

Figure S18. CH₃OH oxidation LSV polarization curves of Mo-Co₄N in 1 M KOH containing different CH₃OH concentrations.

Figure S19. Nyquist plots for Mo-Co₄N in 1 M KOH with and without 3 M CH₃OH at (a) 1.35 V, (b) 1.40 V, (c) 1.45 V, and (d) 1.50 V.

Figure S20. LSV curves of carbon cloth, Co₄N, and Mo-Co₄N for MOR in 1.0 M KOH with CH₃OH.

Figure S21. Tafel slope of carbon cloth, Co₄N, and Mo-Co₄N for MOR in 1.0 M KOH with CH₃OH.

Figure S22. EIS spectra of different samples at potential of 1.5 V. Inset: An equivalent circuit used for fitting data.

Figure S23. Stability test of Mo-Co₄N at a current density of 10 mA cm⁻² in 1 M KOH containing 3 M CH₃OH.

Figure S24. LSV curves of Mo-Co₄N with and without 3 M CH₃OH for HER.

Figure S25. The EIS spectra of Mo-Co₄N at various voltages in 1.0 M KOH.

Figure S26. SEM images of Mo-Co₄N after (a,b) HER and (c,d) MOR test.

Figure S27. XRD patterns of Mo-Co₄N before and after electrochemical test.

Figure S28. TEM images of Mo-Co₄N catalyst after MOR durability test.

Figure S29. Element mapping images of Mo-Co₄N catalyst after MOR durability test.

Figure S30. LSV curves of Co_4N couple in 1.0 M KOH with and without CH_3OH in two-electrode system.

Element	Co	Мо
Mo _{low} -Co ₄ N	22.1	1
Mo-Co ₄ N	18.7	1
Mo _{high} -Co ₄ N	12.0	1

Table S1. The metal elements molar ratio of Mo-Co₄N with different dopant ratios detected from ICP measurement.

Table S2. HER performance comparison of this work with report TMNs or Co-based catalysts.

Catalysts	Overpotentials at 10 mA cm ⁻²	Tafel slope (mV dec ⁻¹)	Reference
Mo-Co ₄ N	45	42	This work
Mo ₂ N–Mo ₂ C/HGr	154	68	<i>Adv. Mater.</i> 2018 , 30, 1704156
NiCoN/CC	68	69	<i>J. Mater. Chem. A</i> 2018 , 6, 4466- 4476
NiCo ₂ N/NF	180	79	ChemSusChem 2017, 10, 4170- 4177
MoN@NC	62	54	ACS Catal. 2017, 7, 3540-3547
CoNx/C	133	57	Nat. Commun. 2015 , 6,7992
V-Co ₄ N	37	41	Angew. Chem. Int. Ed. 2018 , 57, 5076
FeNi ₃ N	75	98	<i>Chem. Mater.</i> 2016 , 28, 6934
Ni ₃ FeN	158	42	Adv. Energy Mater. 2016 , 6, 1502585
Mo-CoP	40	65	<i>Nano Energy</i> 2018 , 48, 73-80
Co ₉ S ₈ @MoS ₂ /CNFs	190	110	<i>Adv. Mater.</i> 2015 , 27, 4752-4759
Co/CNT	320	79	<i>Adv. Mater.</i> 2019 , 31, 1808043
Co(OH)2@HOS/CP	155	71	<i>Adv. Funct. Mater.</i> 2020 , 30, 1909610

Catalyst	$\mathbf{R}_{\mathrm{s}}\left(\Omega ight)$	$R_{ct}(\Omega)$
Carbon cloth	2.82	159.5
Co ₄ N	2.39	40.5
Mo-Co ₄ N	1.94	2.1

Table S3. The R_{ct} and R_s of different samples at potential of -0.15 V for HER. R_s related to the series resistance and R_{ct} denotes the charge transfer resistance.

Table S4. The R_{ct} and R_s of different samples at potential of 1.5 V for MOR.

Catalyst	$R_{s}(\Omega)$	$R_{ct}(\Omega)$
Carbon cloth	3.04	201.7
Co ₄ N	2.63	3.2
Mo-Co ₄ N	2.46	2.8

Electrode Assembly	Anodic Oxidation Reaction	Potentials at 10 mA cm ⁻²	Reference
Mo-Co ₄ N Mo-Co ₄ N	Methanol	1.427 V	This work
Co(OH) ₂ @HOS/CP Co(OH) ₂ @HOS/CP	Methanol	1.497 V	<i>Adv. Funct. Mater.</i> 2020 , 30, 1909610
Ni _{0.33} Co _{0.67} (OH) ₂ /NF Ni _{0.33} Co _{0.67} (OH) ₂ /NF	Methanol	1.65 V@50 mA cm ⁻²	ChemSusChem 2020 , 13, 914-921
Ni(OH) ₂ /NF Ni(OH) ₂ /NF	Methanol	1.52 V	<i>Appl. Catal. B</i> 2021 , 281, 119510
Co _x P@NiCo-LDH/NF Co _x P@NiCo-LDH/NF	Methanol	1.43 V	J Energy Chem. 2020 , 50, 314-323
Ni-Mo nanotube Ni-Mo nanotube	Urea	1.43 V	Nano Energy 2019 , 60, 894-902
Ni(OH) ₂ -NiMoO _x /NF Ni(OH) ₂ -NiMoO _x /NF	Urea	1.42 V	<i>Adv. Energy Mater.</i> 2019 , 9, 1902703
Ni ₂ P/Ni Pt/C	Urea	1.47 V	Nano Research 2021 , 14, 1405-1412
MoO ₂ -FeP@C MoO ₂ - FeP	5- hydroxymethyl furfural	1.486 V	<i>Adv. Mater.</i> 2020 , 32, 2000455
hp-Ni/NF hp-Ni/NF	5- hydroxymethyl furfural	1.50 V	ACS Catal. 2017 , 7, 4564
NiSe@NiO _x ∥ NiSe@NiO _x	5- hydroxymethyl furfural	1.50 V	<i>Appl. Catal. B</i> 2020 , 261, 118235
Ni ₃ N@C/NF Ni ₃ N@C/NF	5- hydroxymethyl furfural	1.46 V	Angew. Chem. Int. Ed. 2019 , 131, 16042
CoNW/NF CoNW/NF	5- hydroxymethyl furfural	1.504 V	Green Chem. 2019 , 21, 6699

Table S5. Performance comparison of reported two-electrode electrolyzer couplinganodic small organic molecules oxidation reactions and hydrogen production.