Insights into the Electronic Structure of Fe Penta-Coordinated Complexes. Spectroscopic Examination and Electrochemical Analysis for the Oxygen Reduction and Oxygen Evolution Reactions.

César Zúñiga Loyola^a, Gabriel Abarca^b, Soledad Ureta-Zañartu^a, Carolina Aliaga^a, Jose

Zagal^a, Moulay Tahar Sougrati^c, Frédéric Jaouen^c, Walter Orellana^d, Federico Tasca^{a*}

^a Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.

^b Universidad Bernardo O'Higgins, Centro Integrativo de Biología y Química Aplicada, Santiago Chile.

^c ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France

^d Departamento de Ciencias Físicas, Universidad Andrés Bello, Sazié 2212, 837-0136 Santiago, Chile.

*Corresponding author: Federico.tasca@usach.cl

Catalyst	Signal	δ_{Iso}	ΔE_Q	FWHM	A map (0/)	Dessible essimment
Catalyst	Signai	(mm/s)	(mm/s)	(mm/s)	Area (70)	Possible assignment
Doublet D _a	a	0.23 (±0.04)	0.39 (±0.06)	0.28 (±0.07)	0.47 (±0.18)	O-Fe(III)Pc-N or N-Fe(II)Pc-N
Doublet D _b	b	0.22 (±0.03)	1.04 (±0.09)	0.45 (±0.12)	0.35 (±0.11)	O-Fe(III)Pc/C
Doublet D _c	с	0.39 (±0.08)	0.54 (±0.23)	0.28 (±0.07)	0.18 (±0.08)	O-Fe(III)Pc-N or N-Fe(II)Pc-N

 Table S1. Mössbauer parameter determined for FePc-Py-CNT and assignment to Fe species

 (*)

(*) Errors are given between parentheses.

Table S2. Binding energy for FePc-CNT and FePc-Py-CNT before and after treatment wit	h
O ₂ .	

	Before expo	osure to O ₂	After expo	osure to O ₂
		Binding energy (eV)		
Compound	Binding energy (eV)	FePc-Py-CNT	Binding energy (eV)	Binding energy (eV)
	FePc-CNT		FePc-CNT	FePc-Py-CNT
Fe ⁰	-	-	-	707.4
Fe ²⁺ (oct)	708.5	708.7	708.7	708.9
Fe ³⁺ (oct)	709.7	709.8	710.3	710.2
Fe ³⁺ (td)	712.0	711.7	713.6	711.9
Fe ²⁺ (sat)	714.9	714.1	715.2	714.1
Fe ³⁺ (sat)	718.5	718.7	718.2	718.8
Fe ²⁺ / Fe ³⁺	0.42	0.33	0.52	0.57

	Before treat	tment with O ₂	After treatment with O ₂		
Compound	FWHM*	Atomic (%)	FWHM	Atomic (%)	
Compound	FePc-CNT	FePc-CNT	FePc-CNT	FePc-CNT	
Fe ⁰	-	-	-	-	
Fe ²⁺ (oct)	1.7	23.34	1.5	23.25	
Fe ³⁺ (oct)	2.8	47.19	2.1	36.77	
Fe ³⁺ (td)	2.8	17.14	2.2	19.67	
Fe ²⁺ (sat)	2.7	6.06	3.1	11.39	
Fe ³⁺ (sat)	2.7	6.26	3.5	8.93	

Table S3. XPS experimental parameter for FePc-CNT before and after exposure to O₂.

*FWHM is the full width at half maximum.

	Before treat	tment with O ₂	After treatment with O ₂		
Compound	FWHM FePc-Py- CNT	Atomic (%) FePc-Py- CNT	FWHM FePc-Py- CNT	Atomic (%) FePc-Py- CNT	
Fe ⁰	-	-	1.6	2.18	
Fe ²⁺ (oct)	1.7	18.87	1.6	18.87	
Fe ³⁺ (oct)	1.7	40.55	1.8	36.55	
Fe ³⁺ (td)	1.9	23.14	1.9	19.14	
Fe ²⁺ (sat)	2.8	6.44	3.2	15.25	
Fe ³⁺ (sat)	3.4	10.99	3.5	8.01	

Table S4. XPS experimental parameter for FePc-Py-CNT before and after exposure to O₂.

*FWHM is the full width at half maximum.

Table S5. Bifunctional performance for various bifunctional electrocatalyst for ORR and OER.

Catabat	E_{10}			Tafel slop	e (V dec ⁻¹)	
Catalyst	(V vs. RHE)	$E_{1/2}$ ORR	ΔE			References
		(V vs. RHE)	(V vs. RHE)	ORR	OER	
FePc-Py-CNT	~1.615	0.935	0.680	-0.022	0.214	This work
FeCoOOH-NF 13D - FeNC	1.46	0.855	0.605	-0.070	0.054	10
Ex-FeN-MC	1.480	0.850	0.630	-	0.047	11
S, N-Fe/N/CNT	1.600	0.850	0.750	-	0.082	12
FePc-GO	1.650	0.890	0.760	-	0.112	13
1@ZIF-67	1.646	0.850	0.796	-0.056	0.106	14
FeNC	1.550	0.720	0.830	-		15
CoPc-GO	1.600	0.760	0.840	-	0.083	13
Mn/Co-N-C	1.660	0.800	0.860	-0.077	0.145	16
Fe-N _x -C	1.830	0.910	0.920	-0.069	0.243	17
2/CNT	1.710	0.760	0.95	-0.043	0.072	18
Ir/C 20 wt% (Vulcan)	1.095	0.660	1.095	-0.141	0.105	19
RuO ₂	1.640	0.540	1.100	-	-	20
Pt/C 20 wt% (Vulcan)	> 2.000	0.810	>1.2	-0.085	0.155	21
IrO ₂	1.700	0.380	1.320	-	-	20
MWCNT-20@B	1.910	0.560	1.350	-	-	22

			Deaerated	R _u C _{dl} circuit	O ₂ sa	turated, R _u (R _F C	dı) circuit
Electrode	F _R	E/V vs. RHE	$R_u/\Omega \ cm^2$	$C_{dl}/\mu F \ cm^{-2}$	$R_u/\Omega \ cm^2$	$R_{\rm F}/k\Omega~cm^2$	C _{dl} /µF cm ⁻²
CNT/GC	6.13	0.88	129	62.6	134	4.82	655
Py-CNT/GC	1.10	0.88	133	100	136	105	84.0
FePc-Py-CNT/GC	6.13	0.88	90.5	737	98	15.6	873
CNT/GC	6.13	0.78	129	717	129	Error > 10%	717
Py-CNT/GC	1.10	0.78	133	117	133	Error > 10%	117
FePc-Py-CNT/GC	6.13	0.78	94.4	1140	94.3	Error > 10%	1140

Table S6. EIS parameters for the ORR at CNT/GC, Py-CNT/GC and FePc-Py-CNT/GC electrodes in deaerated and O₂ saturated 0.1 M KOH.

Table S7. EIS parameters for FePc-Py-CNT/GC electrode (8.6x10⁻⁸ mol Fe cm⁻²; $F_R = 17.5$) according to the[R(RC)] equivalent circuit.

E / V vs. RHE	$R_u/\Omega \ cm^2$	$R_F/k\Omegacm^2$	C _{dl} /mF cm ⁻²
0.78	8.59	4.66	5.13
1.18	8.8	6.99	2.03
1.38	10.9	2.44	2.18
1.43	10	0.594	13.8

Table S8. EIS parameters at 1.38 V vs. RHE for the three kinds of electrodes.

Electrode	F _R	R_u/\Omegacm^2	$R_F/k\Omega~cm^2$	C _{dl} /mF cm ⁻²
CNT/GC	4.58	6.79	1.13	8.34
Py-CNT/GC	1.66	10.6	8.09	1.66
FePc-Py-CNT/GC	6.58	5.59	0.64	14

Table S9. Equilibrium distance between Fe atom and its first-neighbours' atoms in FePc-CNT. (Fe) is the vertical displacement of the Fe atom respect to the FePc plane once the O_2 molecule is adsorbed.

Distance (Å)	FePc-CNT (m=2)	O ₂ -FePc-CNT (m=0)
Fe-N1	1.931	1.946
Fe-N2	1.931	1.933
Fe-N3	1.93	1.933
Fe-N4	1.932	1.947
Fe-O	-	1.774
0-0	-	1.286
Fe-C	2.948	3.156
$\Delta z(Fe)$	0	0.19

The O_2 binding energy is calculated to be of -0.809 eV. We note that the O-O bond distance increases 3.6% with respect to gas phase O_2 .

Table S10. Equilibrium distances between Fe atom and their first-neighbours' atoms in FePc-Py-CNT. (Fe) is the vertical displacement of the Fe atom respect to the FePc plane once the O_2 molecule is adsorbed.

Distance (Å)	FePc-Py-CNT (m=2)	O ₂ -FePc-Py-CNT (m=1)
Fe-N1	1.936	1.959
Fe-N2	1.935	1.958
Fe-N3	1.935	1.942
Fe-N4	1.936	1.943
Fe-N5	1.887	2.09
Fe-O	-	1.832
0-0	-	1.292
Δz (Fe)	-0.17	0.01

The O_2 binding energy is calculated to be of -0.758 eV. We note that the O-O bond distance increases 4.1% with respect to gas phase O_2 .

Figure S1. EPR spectrum of Py-CNT and CNT.

Figure S2. Cyclic voltammetry at 20 mV s⁻¹ in deaerated 0.1 M KOH using CNT/GC, Py-CNT/GC and FePc-Py-CNT/GC electrodes.

Figure S3. Cyclic voltammetry at 20 mV s⁻¹ in O₂ saturated 0.1 M KOH for CNT/GC, Py-CNT/GC and FePc-Py-CNT/GC electrodes.

Figure S4. Nyquist plots at 0.89 V (squares) and 0.79 V (circles) vs. RHE under deaerated (closed symbols) and O_2 saturated (opened symbols) in 0.1 M KOH solution using FePc-Py-CNT/GC electrode.

Figure S5. Cyclic voltammetry at 20 mV s⁻¹ in N_2 to different potential ranges for FePc-Py-CNT/GC in 0.1M KOH.

Figure S6. Nyquist plots at 0.78, 1.18, 1.38, and 1.43 V vs. RHE in deaerated 0.1M KOH using FePc-Py-CNT/GC electrode.

References

- 1 C. A. Melendres, J. Phys. Chem., 1980, 84, 1936–1939.
- U. I. Koslowski, I. Abs-Wurmbach, S. Fiechter and P. Bogdanoff, *J. Phys. Chem. C*, 2008, **112**, 15356–15366.
- U. I. Kramm, M. Lefèvre, N. Larouche, D. Schmeisser and J. P. Dodelet,
 J. Am. Chem. Soc., 2014, 136, 978–985.
- 4 D. A. Summerville, I. A. Cohen, K. Hatano and W. R. Scheidt, *Inorg. Chem.*, 1978, **17**, 2906–2910.
- 5 R. Taube, *Pure Appl. Chem.*, 1974, **38**, 427–438.
- L. Ni, C. Gallenkamp, S. Paul, M. Kübler, P. Theis, S. Chabbra, K. Hofmann, E. Bill, A. Schnegg, B. Albert, V. Krewald and U. I. Kramm, *Adv. Energy Sustain. Res.*, 2021, 2, 2000064.
- G. R. HOY, *Industrial Applications of the Mössbauer Effect*, Springer Netherlands, Notfolk, Virginia, 1st edn., 2002.
- U. I. Kramm, J. Herranz, N. Larouche, T. M. Arruda, M. Lefèvre, F. Jaouen, P. Bogdanoff, S. Fiechter, I. Abs-Wurmbach, S. Mukerjee and J.-P. Dodelet, *Phys. Chem. Chem. Phys.*, 2012, 14, 11673–11688.
- 9 T. C. G. N.N. Greenwood, in *Methods in molecular biology (Clifton, N.J.)*, 2011, vol. 766, pp. 221–235.
- S. Ibraheem, S. Chen, J. Li, Q. Wang and Z. Wei, J. Mater. Chem. A, 2019, 7, 9497–9502.

- R. Akram, M. A. Ud Din, S. U. Dar, A. Arshad, W. Liu, Z. Wu and D.
 Wu, *Nanoscale*, 2018, 10, 5658–5666.
- P. Chen, T. Zhou, L. Xing, K. Xu, Y. Tong, H. Xie, L. Zhang, W. Yan, W.
 Chu, C. Wu and Y. Xie, *Angew. Chemie Int. Ed.*, 2017, 56, 610–614.
- W. Wan, C. A. Triana, J. Lan, J. Li, C. S. Allen, Y. Zhao, M. Iannuzzi and
 G. R. Patzke, ACS Nano, 2020, 14, 13279–13293.
- 14 Z. Liang, H. Guo, G. Zhou, K. Guo, B. Wang, H. Lei, W. Zhang, H. Zheng, U. P. Apfel and R. Cao, *Angew. Chemie Int. Ed.*, 2021, 1–6.
- 15 K. Mamtani, D. Jain, A. C. Co and U. S. Ozkan, *Energy and Fuels*, 2017,
 31, 6541–6547.
- L. Wei, L. Qiu, Y. Liu, J. Zhang, D. Yuan and L. Wang, ACS Sustain.
 Chem. Eng., 2019, 7, 14180–14188.
- 17 J. Han, X. Meng, L. Lu, J. Bian, Z. Li and C. Sun, *Adv. Funct. Mater.*, 2019, 29, 1808872.
- H. Qin, Y. Wang, B. Wang, X. Duan, H. Lei, X. Zhang, H. Zheng, W. Zhang and R. Cao, J. Energy Chem., 2021, 53, 77–81.
- D. Zhou, Z. Cai, X. Lei, W. Tian, Y. Bi, Y. Jia, N. Han, T. Gao, Q. Zhang,Y. Kuang, J. Pan, X. Sun and X. Duan, *Adv. Energy Mater.*, 2018, 8, 1–7.
- 20 R. A. Rincón, J. Masa, S. Mehrpour, F. Tietz and W. Schuhmann, *Chem. Commun.*, 2014, 50, 14760–14762.
- X. Xing, R. Liu, K. Cao, U. Kaiser, G. Zhang and C. Streb, ACS Appl.
 Mater. Interfaces, 2018, 10, 44511–44517.

Y. Cheng, Y. Tian, X. Fan, J. Liu and C. Yan, *Electrochim. Acta*, 2014, 143, 291–296.