Design of Surface Termination for High-Performance Perovskite Solar Cells

Yan Yang, Wangen Zhao,* Tengteng Yang, Jiali Liu, Jingru Zhang, Yuankun Fang, Shengzhong (Frank) Liu*

Y. Yang, Prof. W. Zhao, T. Yang, J. Liu, J. Zhang, Y. Fang, Prof. S. Liu

Key Laboratory for Applied Surface and Colloid Chemistry, National Ministry of

Education; Shaanxi Engineering Lab for Advanced Energy Technology; School of

Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062,

China.

Email: wgzhao@snnu.edu.cn; szliu@dicp.ac.cn

Prof. S. Liu

Dalian National Laboratory for Clean Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials); Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.

Email:<u>szliu@dicp.ac.cn</u>

Fig. 1. Thermogravimetric analysis (TGA) of GASCN.

Fig. 2. Corresponding statistical size distributions for the MAPbI₃ films with GASCN contents, respectively. All films were deposited on glass/FTO/c-TiO₂ substrates.

Fig. 3. Atomic force microscopy (AFM) images of the pristine and 0.05mg/ml GASCN treated film. The region of the AFM images is $5 \times 5 \mu m$.

Fig. 4. UV-vis absorbance spectrum of the perovskite films with the different amounts of GASCN modification.

Fig. 5. Fourier transform infrared (FTIR) spectra of (a) GASCN and MAI before and after annealing and (b) GASCN with and without PbI_2 in DMSO solutions.

Fig. 6. Fourier transform infrared (FTIR) spectra of different films. All films were deposited on glass/FTO/c-TiO₂ substrates.

Fig. 6. XPS spectra of (a) pristine film and (b) GASCN treated film, and high resolution XPS of C 1s (c) and (d) N 1s of pristine and GASCN-MAPbI₃ films.

Fig. 7. Equivalent circuit model for the EIS spectra at bias voltage of 1.0 V. R_s , R_{tr} , R_{rec} and C_{rec} are series resistance, transport resistance, recombination resistance and the chemical capacitance, respectively.

Fig. 8. The J_{sc} as a function of the light intensity for the corresponding devices.

Fig. 9. The *J-V* curves of MAPbI₃ perovskite cells without and with GASCN treatment are recorded with forward and reverse voltage scanning directions under AM 1.5G irradiation (100 mW cm⁻²).

Fig. 11. *J*-*V* curve of device with the champion V_{OC} and champion PCE measured by reverse scan under standard AM 1.5G irradiation.

Fig. S12 Photovoltaic parameters statistics of $MAPbI_3$ based n-i-p PCSs in recent three years.

Table 1. Photovoltaic parameters for typical MAPbI₃ devices based on different solvent of GASCN with reverse scanning directions. All *J-V* curves were measured under simulated AM 1.5G illumination with a reverse scan rate of 0.15 V s⁻¹.

Sample	V_{oc} (V)	J_{sc} (mA/cm ²)	Fill Factor (%)	PCE (%)
СН	1.112	23.99	76.54	20.23
	(1.103 ± 0.007)	(23.69±0.18)	(74.92 ± 1.46)	(19.58±0.48)
CB	1.154	23.95	79.65	21.26
	(1.133±0.014)	(23.81±0.11)	(77.76±1.14)	(20.98 ± 0.14)
EA	1.129	23.98	75.95	20.23
	(1.100 ± 0.018)	(23.76±0.17)	(74.01±1.29)	(19.35±0.58)
IPA	1.113	23.99	74.71	19.38
	(1.083 ± 0.012)	(23.67±0.16)	(72.63 ± 1.40)	(18.61±0.41)

Table 2. Fitted parameters based on TR-PL spectra of the perovskite films.

Sample	$\tau_1(ns)$	% of τ_1	$ au_2$ (ns)	% of τ_2	τ _{ave} (ns)
W/O	22.095	37.20	12.808	62.80	22.095
S 1	71.545	51.02	33.668	48.98	52.992
S2	65.687	57.86	27.374	42.14	49.540
S3	55.261	51.20	20.975	48.80	38.529

Table 3. Equivalent circuit fitting parameters for the EIS spectra.

Sample	$R_{s}(\Omega)$	$R_{tr}\left(\Omega ight)$	$C_{tr}(nF)$	$R_{rec}(\Omega)$	$C_{rec} (nF)$
W/O	33.85	124	38.46	3130	12.18
With	33.36	385	71.08	7885	23.45

Device Structure	J _{sc} (mA/cm ²)	V _{oc} (V)	FF (%)	PCE(%)	Ref.
SnO ₂ /MAPbI ₃ /FAI/HTL	22.99	1.127	77.50	20.09	1
c-TIO ₂ /m- TIO ₂ /MAPbI ₃ /AVA/HTL	22.30	1.060	76.00	18.00	2
SnO ₂ /MAPbI ₃ /EDBEPbI ₄ /HTL	23.17	1.110	73.90	19.13	3
SnO ₂ /MAPbI ₃ /QA/HTL	23.19	1.130	80.00	21.06	4
c-SnO ₂ /MAPbI ₃ /HTL	23.98	1.120	78.62	21.09	5
c-SnO ₂ /MAPbI ₃ /HTL	23.73	1.100	78.00	20.36	6
Li-SnO ₂ /MAPbI ₃ /HTL	23.24	1.133	76.66	20.18	7
c-TiO ₂ /SnO ₂ /MAPbI ₃ /HTL	23.39	1.104	81.90	21.16	8
c-TiO ₂ /SnO ₂ /MAPbI ₃ /HTL	22.92	1.110	79.00	20.05	9
c-TiO ₂ /MAPbI _{3-x} Cl _x /HTL	21.91	1.063	80.00	18.70	10
SnO ₂ /Chol-SnO ₂ /MAPbI ₃ /HTL	22.80	1.145	72.41	18.90	11
c-TiO ₂ /MAPbI ₃ /HTL	23.89	1.100	76.40	20.09	12
c-TiO ₂ /SnO ₂ /MAPbI ₃ /HTL	23.31	1.082	82.25	20.65	13
T:O MADEL /UTI	23.75	1.123	70.00	21.26	This
110_2 /MAPUI ₃ /HTL		1.154 (highest)	/9.66		work

Table 4. Literature survey of recent works on polycrystalline MAPbI3-based n-i-pPSCs.

Respectively, all HTL in the table refer to Spiro-OMeTAD.

References:

1 Y. Zou, H.-Y. Wang, Y. Qin, C. Mu, Q. Li, D. Xu and J. Zhang, *Adv. Funct. Mater.*, 2019, **29**, 1805810.

2 T. Ye, A. Bruno, G. Han, T. M. Koh, J. Li, N. F. Jamaludin, C. Soci, S. G. Mhaisalkar and W. L. Leong, *Adv. Funct. Mater.*, 2018, **28**, 1801654.

3 P. Li, Y. Zhang, C. Liang, G. Xing, X. Liu, F. Li, X. Liu, X. Hu, G. Shao and Y. Song, *Adv. Mater.*, 2018, **30**, e1805323.

4 Q. He, M. Worku, H. Liu, E. Lochner, A. J. Robb, S. Lteif, J. S. R. Vellore-Winfred,

K. Hanson, J. B. Schlenoff, B. J. Kim and B. Ma, Angew. Chem. Int. Ed., 2021, 60, 2485-2492.

- 5 Z. Liu, F. Cao, M. Wang, M. Wang and L. Li, *Angew. Chem. Int. Ed.*, 2020, **59**, 4161-4167.
- 6 W. Hou, G. Han, T. Ou, Y. Xiao and Q. Chen, Angew. Chem. Int. Ed., 2020, 59, 21409-21413.

7 K. Jung, W.-S. Chae, J. W. Choi, K. C. Kim and M.-J. Lee, *J. Energy Chem.*, 2020, **59**, 755-762.

8 X. Wang, Y. Wang, T. Zhang, X. Liu and Y. Zhao, Angew. Chem. Int. Ed., 2020, 59, 1469-1473.

9 N. Wei, Y. Chen, Y. Miao, T. Zhang, X. Wang, H. Wei and Y. Zhao, J. Phys. Chem. Lett., 2020, 11, 8170-8176.

10 F. Wu, X. Yue, Q. Song and L. Zhu, Sol. RRL., 2018, 2, 1700147.

11 J. Yan, Z. Lin, Q. Cai, X. Wen and C. Mu, ACS Appl. Energy Mater., 2020, 3, 3504-3511.

- 12 Z. Yao, W. Zhao, Z. Xu, J. Wen and S. Liu, Small, 2020, 16, e2003582.
- 13 Y. Wang, H. Zhang, T. Zhang, W. Shi, M. Kan, J. Chen and Y. Zhao, *Sol. RRL*.,2019, 3, 1900197.