Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Zincothermic reduction of silica to silicon: Make the impossible possible

Muya Cai¹, Zhuqing Zhao¹, Jiakang Qu¹, Qiang Ma¹, Xin Qu¹, Lei Guo², Hongwei Xie¹, Dihua

Wang², Huayi Yin^{1,2} *

1. Key Laboratory for Ecological Metallurgy of Multimetallic Mineral of Ministry of Education,

School of Metallurgy, Northeastern University, 11 Wenhua Road, Heping District, Shenyang

110819, P. R. China.

2. School of Resource and Environmental Science, Wuhan University, 299 Bayi Road, Wuchang

District, Wuhan 430072, P. R. China.

Email: yinhuayi@whu.edu.cn

Fig. S1 The XRD pattern of nano-SiO₂ materials.

Fig. S2 Optical photograph of the (a) unreacted product including AlCl₃+SiO₂+Zn, (b) crude product obtained at 250 °C for 12 h without any treatment (contains salts), and (c) XRD pattern of the crude product.

Fig. S3 SEM images of (a) hollow Si and (b) its corresponding reducing agent micro Zn particle.

Fig. S4 Distribution profile of Si nanoparticle sizes from ZnR-Si after 10 minutes of manual grinding.

Fig. S5. TEM images of ZnR-Si with similar hollow structures and the hollow Si shell made by nano Si particles.

Fig. S6 XRD patterns of the zincothermic reduction sample (a) after 3 times of water washing, (b) after HCl and water washing (no HF leaching).

Fig. S7 Gibbs free energy profiles of the reaction of typical chlorides with oxygen as a function of temperature.

Fig. S8 XRD patterns of ZnR-Si samples with different AlCl₃ contents at 250 °C 12 h.

Fig. S9 Optical photographs of micro Zn powder (3 g) mixed with SiCl₄ solution (2.8 g) after reaction without any treatment. (a) The sample without AlCl₃ salt obtained at 250 °C 24 h, (b) added 2 g AlCl₃ obtained at 250 °C for 12 h, (c) added 5 g AlC₃ obtained at 250 °C for 12 h.

Fig. S10 Phase diagram of AlCl₃-ZnCl₂ binary system¹.

Fig. S11 Charge/discharge profiles of the LCO||Pre-lithiated Si full-cell at the 1st, 20th, and 100th cycles.

Si	Reducing	Reducing	Reducing	Synthesis	Structure	Ref.
source	agent	Temperature (°C)	Time (h)	conditions		
SiO ₂	С	1724 ~ 1990	n/a	Vacuum	Bulk Si	2
SiO ₂	С	1500-2000	n/a	n/a	Bulk Si	3
quartz	electron	850	1	Molten CaCl ₂	Nano rods	4
				based salt		
MgSiO ₃	electron	650	12	Molten MgCl ₂	Nano particles	5
				based salt		
SiCl ₄	electron	850	n/a	KCl	Bulk Si	6
SiO ₂	Al	700	4	n/a	Macro porous	7
Rice	Al	700	3	n/a	Porous	8
husks					SiO _x @C	
SiO ₂	Mg	650	2.5	n/a	Micro porous	9
SiO_2	Mg	650	2.5	Solid NaCl	Nano porous	10
SiO ₂	Al or Mg	250	12	Molten AlCl ₃	Nano spheres	11
SiO ₂ @C	Al	300	12	Molten AlCl ₃ - NaCl	Nano Si@C	12
SiO ₂ @C	Al	220	16	Molten AlCl ₃ -	Micro Si@C	13
				ZnCl ₂		
SiCl ₄	Mg	200	10	Molten AlCl ₃	Nano particles	14
SiO ₂	Zn	250	12	Molten AlCl ₃	Hollow	This
					spheres	work

 Table S1. Methods of producing silicon under various temperatures and with different reducing agents.

References

- 1. S. Pedersen, *Viscosity, structure and glass formationin the AlCl₃-ZnCl₂ system,* Fakultet for naturvitenskap og teknologi, 2001.
- 2. P. G. Loutzenhiser, O. Tuerk and A. Steinfeld, *Jom*, 2010, **62**, 49-54.
- 3. H.-C. Lee, S. Dhage, M. S. Akhtar, D. H. Kwak, W. J. Lee, C.-Y. Kim and O. B. Yang, *Curr. Appl. Phys.*, 2010, **10**, S218-S221.
- 4. T. Nohira, K. Yasuda and Y. Ito, *Nat. Mater.*, 2003, **2**, 397-401.
- 5. M. Cai, X. Zhou, Z. Zhao, Q. Ma, H. Xie, X. Li and H. Yin, *ACS Sustain. Chem. Eng.*, 2020, **8**, 9866-9874.
- 6. K. Yasuda, K. Maeda, R. Hagiwara, T. Homma and T. Nohira, *J. Electrochem. Soc.*, 2016, **164**, D67-D71.
- 7. N.-K. Park, Y. H. Jeong, T. J. Lee, S. H. Lee and S. H. Lee, *J. Nanosci. Nanotechnol.*, 2018, **18**, 7275-7280.
- 8. J. Cui, Y. Cui, S. Li, H. Sun, Z. Wen and J. Sun, *ACS Appl. Mater. Interfaces*, 2016, **8**, 30239-30247.
- Z. Bao, M. R. Weatherspoon, S. Shian, Y. Cai, P. D. Graham, S. M. Allan, G. Ahmad, M. B. Dickerson, B. C. Church, Z. Kang, H. W. Abernathy, 3rd, C. J. Summers, M. Liu and K. H. Sandhage, *Nature*, 2007, 446, 172-175.
- 10. W. Luo, X. Wang, C. Meyers, N. Wannenmacher, W. Sirisaksoontorn, M. M. Lerner and X. Ji, *Sci. Rep.*, 2013, **3**, 2222.
- 11. N. Lin, Y. Han, J. Zhou, K. Zhang, T. Xu, Y. Zhu and Y. Qian, *Energy Environ*. *Sci.*, 2015, **8**, 3187-3191.
- P. Gao, X. Huang, Y. Zhao, X. Hu, D. Cen, G. Gao, Z. Bao, Y. Mei, Z. Di and G. Wu, ACS Nano, 2018, 12, 11481-11490.
- K. Mishra, J. Zheng, R. Patel, L. Estevez, H. Jia, L. Luo, P. Z. El-Khoury, X. Li, X.-D. Zhou and J.-G. Zhang, *Electrochim. Acta*, 2018, 269, 509-516.
- 14. N. Lin, Y. Han, L. Wang, J. Zhou, J. Zhou, Y. Zhu and Y. Qian, *Angew. Chem. Int. Ed. Engl.*, 2015, **54**, 3822-3825.