Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

High-capacity hexaazatrinaphthylene anode for aqueous organic hybrid

flow battery

Zirui Liu ^a[†], Zheng Wang ^a[†], Yanjun Shi ^a, Yong-Miao Shen ^b, Wenchang Wang ^a, Zhidong Chen ^a, Juan Xu ^{*a} and Jianyu Cao ^{*a}

^aJiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China.

^bDepartment of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.

[†]Z. L. and Z. W. contributed equally.

*Corresponding author. E-mail: jycao@cczu.edu.cn (Jianyu Cao); cjytion@cczu.edu.cn (Juan Xu)

Electron transfer coefficient (α) and charge transfer rate constant (k^0) for ET1 and ET2

Fig. S1 shows CVs of HATN electrode in 1 M KOH solution at different scan rates (*v*). The scan rates increase from 0.2 to 4 V s⁻¹. The α and k^0 were determined by Laviron's method ^[S1] from the following equation:

$$\Delta E_p = \frac{2.303RT}{\alpha(1-\alpha)nF} \left[\alpha \log (1-\alpha) + (1-\alpha)\log\alpha - \log\left(\frac{RTk^0}{nF}\right) \right] + \frac{2.303RT}{\alpha(1-\alpha)nF} \log v$$
(Eq. S1)

where $\Delta E_{\rm p}$ is the potential difference between the oxidation and reduction peak, v is the

scan rate, *n* is the transfer electron number (*n*=3), k^0 is charge transfer rate constant, and α is electron transfer coefficient, respectively.

The plot of ΔE_p versus log(*v*) produces a straight line along with an intercept at high scan rates (**Fig. S2a and S2b**). The k^0 is obtained from the intercept value. The α value for both ET1 and ET2 of HATN can be calculated from the slope of the ΔE_p -log (*v*) dependence ($2.3RT/\alpha(1-\alpha)nF$), which is about 0.74 and 0.53, respectively. Then, the k^0 value for ET1 and ET2 is calculated to be ca. 9.66 and 33.3 s⁻¹, respectively.

Fig. S1 CVs of HATN electrode in 1 M KOH solution at different scan rates (the scan

Fig. S2 (a) Plot of ΔE_p versus log (*v*) for ET1 of HATN electrode. (b) Plot of ΔE_p versus log (*v*) for ET2 of HATN electrode.

Fig. S3 ¹H NMR (500 MHz, CDCl₃) spectra. (A) as-synthesized HATN. (B) HATN after 7 days treating in 1 M KOH at 25 °C.

The as-synthesized HATN (11.5 mg) was added to 20 mL of 1 M KOH solution with intense magnetic stirring at room temperature and kept for 7 days. Then, 20 mL of chloroform was added to dissolve HATN and extract possible decomposition products. After the chloroform was removed by rotary evaporation, about 0.5 mL deuterated chloroform was added to form a saturated solution of HATN that was used as the sample for the ¹H NMR analysis. Two additional proton peaks located at 7.51 and 7.09 ppm were observed in the ¹H NMR spectrum of the HATN sample after 7 days treating in 1 M KOH, which was assigned to hydrogenated hexaazatrinaphtylene (*e.g.* HATN-2H, a by-product of HATN) that was enriched during sample processing.

Flow cell	<i>j</i> (mA cm ⁻²) ^a	AC (mAh cm ⁻²) ^b	μ (mg cm ⁻²) ^c	η ^d	Cycle number	Anolyte
Zn-polyiodide ^{S2}	10	234.3	429.2	66.6%	38	3.5 M ZnI_2
Zn-Br ₂ &I ₂ ^{S3}	10	34	122.6	33.8%	20	5M ZnI ₂ + 2.5 M ZnBr ₂
Zn-Br ₂ single ^{S4}	80	23.2	58 ^e	48.7% ^e	500	3M ZnBr ₂
Zn-Br ₂ ^{S5}	40	40	726.7	6.7%	140	2 M ZnBr ₂
Zn-Br ₂ ^{S6}	100	20	545	4.5%	5000	$2 M ZnBr_2 + 0.5 M ZnCl_2$
Zn-Fe ^{S7}	100	26.3	40.9	78.5%	210	0.5 M Zn(OH)4 ²⁻
Zn-Mn ^{S8}	40	13.3	54.5	30.0%	100	1.5 M ZnCl ₂
Zn-	2	0.108	3.14	4.2%	1000	0.08 M
poly(TEMPO) static ^{S9}						ZnCl ₂
Zn-TEMPO- SO ₃ K ^{S10}	40	~20	261.6	9.3%	50	2 M ZnCl ₂
PPyQX- K ₄ Fe(CN) ₆ ^{S11}	~1.5 (4 A g ⁻¹)	0.18	0.37	24.2% (at 1 Ag ⁻¹)	1000	NA
TPPHZ- K ₄ Fe(CN) ₆ ^{S12}	10.2 (10 A g ⁻¹)	0.09	1.02	71.7% (at 1 Ag ⁻¹)	1200	NA
HATN- K4Fe(CN)6 (this work)	20 (8 A g ⁻¹)	0.668	2.5	63.9% (at 0.5 Ag ⁻¹)	1500	NA

Table S1. Summary of various hybrid RFBs. *j*, current density; AC, areal capacity; μ , mass loading of anode material; η , material utilization. NA, not applicable.

^aThe applied current density during the long-term charge-discharge cycling. ^bAreal capacity is obtained by dividing the achieved reversible capacity by the active electrode area. ^cThe mass loading of anode material (μ) is calculated using the following formula:

$$\mu = \frac{nCVF}{3.6A} \tag{Eq. S1}$$

where n is the number of electrons per mole, C is the concentration of zinc ion in the anolyte, V is volume of the anolyte, F is the Faraday constant and A is the electrode area. ^dThe material utilization (η) is obtained by dividing the achieved reversible capacity by the theoretical capacity of the anolyte or the solid anode material. ^eBased on the volume of anolyte of 14.2 mL.

Fig. S4 Average current efficiency of the HATN// K_4 [Fe(CN)₆] cell versus charge cutoff voltage at a constant current density of 8 A g⁻¹.

Table S2 Performance comparisons of the HATN//K₄[Fe(CN)₆] AHFB with other previously-reported organic AHFBs. OCV, open circuit voltage (in V); SDC, specific discharge capacity; CE, Coulomb efficiency; EE, energy efficiency; CRPC, capacity retention per cycle. NA, not applicable. All performances data are obtained at room temperature.

AHFB	OCV	SDC	CE	EE	CRPC
Zn//poly(TEM PO) ^{S9}	1.70 V	1.1 AhL ^{-1a}	~98% (at 0.01A cm ⁻²)	81% (at 0.01A cm ⁻²)	~99.977% (1000 cycles)
Zn//TEMPO- SO ₃ K ^{S10}	1.69 V	0.92 AhL ^{-1a}	>98% (at 0.003 A cm ⁻ ²)	>86% (at 0.003 A cm ⁻ ²)	99.994% (1100 cycles)
Zn//FQ ^{S13}	~2.0 V	~4.5 AhL ^{-1a}	99.5% (at 0.02A cm ⁻²)	70.2% (at 0.02A cm ⁻²)	99.92% (50 cycles)
Zn//pBQ S14	>1.17 V	NA	~72% (at 0.03A cm ⁻²)	42% (at 0.03A cm ⁻²)	NA (20 cycles)
Zn//g ⁺ - TEMPO ^{S15}	~1.6 V	~4.2 AhL ^{-1a}	99.3% (at 0.02 A cm ⁻²)	77.1% (at 0.02 A cm ⁻²)	99.954% (140 cycles)
PAQP _y //NH ₂ - TEMPO ^{S16}	1.02 V	23.9 mAhg ⁻ ¹ (at 0.2 Ag ⁻ ¹) ^b	NA	53.9% (at 1A g ⁻¹)	99.80% (100 cycles)
PAQP _y /G//NH 2-TEMPO ^{S16}	1.02 V	62.2 mAhg ⁻ ¹ (at 0.2 Ag ⁻ ¹) ^b	92% (at 1A g ⁻¹)	74.5% (at 1A g ⁻¹)	99.68% (100 cycles)
PPyQX//K ₄ [F e(CN) ₆] ^{S11}	1.15 V	67.1 mAhg ⁻ ¹ (at 1 Ag ⁻¹) ^b	93.8% (at 4 A g ⁻¹)	80.5% (at 4 A g ⁻¹)	~99.975% (1000 cycles)
TPPHZ//K ₄ [F e(CN) ₆] ^{S12}	1.37 V	92.4 mAhg ⁻ ¹ (at 1 Ag ⁻¹) ^b	98.6% (at 10 A g ⁻¹ or 10.2 mA cm ⁻²)	87.2% (at 10 A g ⁻¹ or 10.2 mA cm ⁻²)	99.998% (1200 cycles)
TPPHZ/G//K ₄ [Fe(CN) ₆] ^{S17}	1.30 V	87.1 mAhg ⁻ ¹ (at 0.5 Ag ⁻ ¹) ^b	95.1% (at 5 A g ⁻¹ or 5.5 mA cm ⁻²)	89.3% (at 5 A g ⁻¹ or 5.5 mA cm ⁻²)	~99.9938% (3000 cycles)
HATN//K ₄ [Fe (CN) ₆] in this work	~1.14 V	267 mAhg ⁻ ¹ (at 0.5 Ag ⁻ ¹) ^b	99.7% (at 8 A g ⁻¹ or 20 mA cm ⁻²)	75.5% (at 8 A g ⁻¹ or 20 mA cm ⁻²)	~99.977% (1500 cycles)

^aBased on the catholyte. ^bBased on the anode material.

Fig. S5 (a) UV-vis absorption spectra of the $K_4Fe(CN)_6$ solution with different concentration. (b) The linear plot between the concentration of $K_4Fe(CN)_6$ and the maximum absorbance recorded at λ =223 nm. The concentration of $K_4Fe(CN)_6$ at the anode side (acceptor half cell) was calculated to be ~3.99 mM.

Fig. S6 EIS spectra of the HATN// K_4 Fe(CN)₆ cell before and after 1500 cycles.

Fig. S7 ¹³C NMR spectrum (125 MHz, D_2O) for the supporting electrolyte on the HATN side after 1440 cycles at 8 A g⁻¹.

Fig. S8 SEM images of a HATN electrode. (a, b) before cycling. (c, d) after cycling.

Fig. S9 CV curves of the HATN electrode before and after 1440 cycles at 25 mVs⁻¹.

Fig. S10 Cycling capacity retention and efficiency data of the HATN//K₄[Fe(CN)₆] cell at 8 A g⁻¹. 1 M KOH + 0.35 M KCl solution (10 mL) was used as the anodic supporting electrolyte while 50 mM K₄[Fe(CN)₆] + 50 mM K₃[Fe(CN)₆] in 1 M KOH solution (10 mL) was used as the catholyte. After 1568 cycles, the Fe(CN)₆⁴⁻/Fe(CN)₆³⁻ catholyte was replaced with a fresh one.

References

- [S1] (a) Laviron, E. J. Electroanal. Chem. 1979, 101, 19; (b) S. Chatterjee, K. Sengupta,
 S. Bandyopadhyay, A. Dey, J. Mater. Chem. A 2016, 4, 6819.
- [S2] B, Li, Z. Nie, M. Vijayakumar, G. Li, J. Liu, V. Sprenkle, W. Wang, Nat. Commun. 2015, 6, 6303.
- [S3] G.-M. Weng, Z. Li, G. Cong, Y. Zhou, Y.-C. Lu, *Energy Environ. Sci.* 2017, 10, 735.
- [S4] C. Xie, Y. Liu, W. Lu, H. Zhang, X. Li, Energy Environ. Sci. 2019, 12, 1834.
- [S5] Y. Yin, S. Wang, Q. Zhang, Y. Song, N. Chang, Y. Pan, H. Zhang, X. Li, Adv. Mater. 2020, 32, 1906803.
- [S6] J.-H. Lee, R. Kim, S. Kim, J. Heo, H. Kwon, J. H. Yang, H.-T. Kim, *Energy Environ. Sci.* 2020, 13, 2839.
- [S7] Z. Yuan, Y. Duan, T. Liu, H. Zhang, X. Li, *iScience* 2018, 3, 40.
- [S8] C. Xie, T. Li, C. Deng, Y. Song, H. Zhang, X. Li, *Energy Environ. Sci.* 2020, 13, 135.
- [S9] J. Winsberg, T. Janoschka, S. Morgenstern, T. Hagemann, S. Muench, G. Hauffman, J.-F. Gohy, M. D. Hager, U. S. Schubert, *Adv. Mater.*, 2016, 28, 2238.
- [S10] J. Winsberg, C. Stolze, A. Schwenke, S. Muench, M. D. Hager, U. S. Schubert, ACS Energy Lett., 2017, 2, 411.
- [S11] B. Wang, Y. Zhang, Y. Zhu, Y.-M. Shen, W. Wang, Z. Chen, J. Cao, J. Xu, J.

Power Sources 2020, 451, 227788.

- [S12] Y. Zhang, J. Cao, Z. Chen, J. Xu, C. Yu, J. Mater. Chem. A 2020, 8, 6874.
- [S13] M. Park, E. S. Beh, E. M. Fell, Y. Jing, E. F. Kerr, D. DePorcellinis, M.-A.
- Goulet, J. Ryu, A. A. Wong, R. G. Gordon, J. Cho and M. J. Aziz, Adv. Energy Mater., 2019, 1900694.
- [S14] P. K. Leung, T. Martin, A. A. Shah, M. R. Mohamed, M. A. Anderson and J. Palma, *J. Power Sources*, 2017, 341, 36.
- [S15] Z. Chang, D. Henkensmeier, R. Chen, ChemSusChem, 2017, 10, 3193-3197.
- [S16] J. Cao, F. Ding, H. Chen, H. Wang, W. Wang, Z. Chen, J. Xu, *J. Power Sources* 2019, 423, 316-322.
- [S17] Y. Zhang, W. Liu, Z. Wang, Y.-M. Shen, W. Wang, Z. Chen, J. Xu, J. Cao, Carbon 2020, 161, 309-315.