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Fig. S1  Geometry structures for (a) SFM and (b) Sb-SFM. The supercell composition 

was set to Sr64Fe48Mo16O192 and Sr64Fe48Mo12Sb4O192 with 320 atoms, which can be 

simplified as Sr2Fe1.5Mo0.5O6 and Sr2Fe1.5Mo0.375Sb0.125O6, respectively. 
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Fig. S2  TEM images for (a) oxidized SFM and (b) oxidized Sb-SFM powders. The crystal 

grains are connected to each other to form aggregated powders. The grain size is in 

the range of about 100-500 nm. Sb doping does not change the grain size and 

morphology.  

 

 

Fig. S3  SEM micrographs for SFM and Sb-SFM powders before and after reduction 

treatment in humidified H2 at 800 C for 5 h. (a) oxidized SFM, (b) oxidized Sb-SFM, (c) 

reduced SFM, and (d) reduced Sb-SFM. All the powders show almost the same 

microstructures, suggesting that Sb doping and reduction have negligible effects on 

the microstructures. 
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Fig. S4  XRD patterns for Sb-SFM, LSGM, and Sb-SFM~LSGM composite. The 

composite is obtained by heating Sb-SFM and LSGM mixture with a mass ratio of 

1: 1 in air at 1100 oC for 2 h. 

 

 

 
Fig. S5  XPS spectra for the oxidized SFM and Sb-SFM: (a) Fe 2p3/2, (b) Mo 3d5/2. The 

spectra for the reduced samples are shown in Fig. 4. 
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Fig. S6  Oxygen nonstoichiometry (δ) for reduced SFM (Sr2Fe1.5Mo0.5O6-δ) and Sb-SFM 

(Sr2Fe1.5Mo0.4Sb0.1O6-δ) at 650, 700, 750 and 800 °C, respectively. The values are 

calculated from the TG and XPS results.  

 

 

 

Fig. S7  SEM analysis for SFM and Sb-SFM bars sintered in air at 1350 °C for 5 h. Cross-

sectional images for (a) SFM and (b) Sb-SFM, and surface images for (c) SFM and (d) 

Sb-SFM. Their densities exceed 97% as determined with Archimedes method. And the 

two samples have very similar microstructures.  
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Fig. S8  Normalized conductivity and ECR fitting results for (a) SFM and (b) Sb-SFM bar 
samples. The measurement was conducted by increasing the hydrogen partial 
pressure from 5% H2/Ar to 10% H2/Ar for hydrogen oxidation reaction. 

 

 

 

 

Fig. S9  Electrochemical impedance spectra (EIS) of symmetric cells supported on 

LSGM electrolytes measured in humidified H2 from 650 to 800 °C: (a) SFM electrodes, 

(b) Sb-SFM electrodes. The ohmic resistance, which is generated from the electrolytes 

and the wires, has been zeroed in order to better compare the performance of the 

electrodes. 
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Fig. S10  SEM cross-sectional images of symmetrical cells with (a) SFM electrode and 

(b) Sb-SFM electrode. The SFM and Sb-SFM electrodes have similar structures and are 

both in good contact with the dense LSGM electrolytes. 

 

 

 

Fig. S11  SEM cross-sectional images after the durability test for 220 h using humidified 

H2 as the fuel: (a) whole single cell showing the three-layer structure of Sb-

SFM/LSGM/LSCF-SDC, and (b) Sb-SFM anode showing the anode/electrolyte interface. 

It can be observed that the Sb-SFM anode shows good contact with LSGM electrolyte 

and maintains uniform pore structure, indicating that Sb-SFM materials are very stable 

under the SOFC operating conditions. 
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Fig. S12  Electrochemical performance of single cells supported on LSGM (280 μm) 

electrolytes using syngas as the fuel with (a) SFM and (b) Sb-SFM anodes, (c) the 

stability test for Sb-SFM anode operated at 750 °C under a current density of 0.25 A 

cm-2, (d) Raman spectrum for Sb-SFM anode after the durability test. Neither D (1340 

cm-1) nor G (1580 cm-1) carbon peaks can be seen, indicating no carbon is formed and 

deposited on the surface of Sb-SFM anode after running in syngas. 

 

 

Fig. S13  SEM cross-sectional images after durability test using syngas as the fuel: (a) 

Sb-SFM/LSGM interface, and (b) the magnified Sb-SFM anode microstructure. It can 

be observed that the Sb-SFM anode shows good contact with LSGM electrolyte, 

indicating that Sb-SFM material is very stable under the SOFC operating conditions 

with syngas as the fuel. 
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Fig. S14  Electrochemical performance of single cells supported on LSGM (280 μm) 

electrolytes using ethanol as the fuel with (a) SFM and (b) Sb-SFM anodes, (c) the 

stability test for Sb-SFM anode operated at 750 °C under a current density of 0.25 A 

cm-2; (d) Raman spectrum for Sb-SFM anode after the durability test. Neither D (1340 

cm-1) nor G (1580 cm-1) carbon peaks are detected, indicating no carbon is formed on 

the surface of Sb-SFM anode after running in ethanol. 

 

 

Fig. S15  The sweep gas is detected using gas chromatography with different columns 

when ethanol is supplied as the fuel. (a) channel 1: 10m MS5A Heated Inj, Backflush, 

RTS opt and (b) channel 2: 10m PPQ Heated Injector, Backflush. 
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Fig. S16  Gas chromatography analysis when ethanol is supplied at OCV: (a) the sweep 

gas from channel 1 at different temperatures, and (b) the peak area of H2 (corresponding 

to the generation of H2) at 850, 800 and 750 ℃. 

 

 

 

 
Fig. S17  SEM cross-sectional images after durability test using ethanol as the fuel: (a) 

Sb-SFM/LSGM interface, and (b) the magnified Sb-SFM anode microstructure. No 

cracking is observed between the Sb-SFM anode and the LSGM electrolyte under the 

SOFC operating conditions with ethanol as the fuel.  
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Table S1  Rietveld refinement results for the oxidized SFM and Sb-SFM. 
Sample Space group a =b =c (Å) V (Å3) Rp (%) Rwp (%) χ2 

Oxidized SFM Pm-3m 3.917 60.098 2.40 3.37 5.84 
Oxidized Sb-SFM Pm-3m 3.912 59.868 2.07 2.76 6.54 

 

 

Table S2  XPS fitting results of Fe 2p3/2 and Mo 3d5/2 for the oxidized and reduced 

SFM and Sb-SFM powders. 

Sample 
Fe2+ 

(at.%) 
Fe3+ 

(at.%) 
Fe4+ 

(at.%) 

Average 
valence of 

Fe 

Mo5+ 
(at.%) 

Mo6+ 
(at.%) 

Average 
valence of 

Mo 
δ 

Oxidized 
SFM 

15.4 51.2 33.4 3.180 26.1 73.9 5.739 0.180 

Oxidized 
Sb-SFM 

14.1 51.6 34.3 3.202 25.6 74.4 5.744 0.200 

Reduced 
SFM 

24.3 55.5 20.2 2.959 39.3 60.7 5.607 0.379 

Reduced 
Sb-SFM 

27.4 58.9 13.7 2.863 43.4 56.6 5.566 0.490 

 

 

Table S3  XPS fitting results of O1s for the reduced SFM and Sb-SFM samples. 

Sample 
B.E. O1s (eV) 

Oads/ (Olat+ Oads) (at.%) 
Olat Oads 

Reduced SFM 529.9 531.2 55.8 
Reduced Sb-SFM 529.9 531.3 81.5 

 

 

Table S4 EIS fitting results for SFM and Sb-SFM electrodes measured at 800 °C in 

humidified H2 using symmetrical cells. 

 RH (Ω cm2) RM (Ω cm2) RL (Ω cm2) 

SFM 0.073 0.060 0.053 
Sb-SFM 0.047 0.017 0.011 

 


