Supporting Information

Practical room temperature formaldehyde sensing based on combination of visible-light activation and dipole modification

Hongping Liang^{1, 2}, Lanpeng Guo^{1, 2}, Nengjie Cao^{1, 2}, Huiyun Hu^{1, 2}, Hao Li^{1,2}, Nicolaas Frans de Rooij², Ahmad Umar³, Hamed Algarni⁴, Yao Wang^{1, 2,*} and Guofu Zhou^{1, 2}

¹Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.

²National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, 510006, P. R. China.

³Promising Centre for Sensors and Electronic Devices, Department of Chemistry, Faculty of Science and Arts, Najran University, Najran, 11001, Kingdom of Saudi Arabia.

⁴Department of Physics, King Khalid University, Abha, 61421, Kingdom of Saudi Arabia.

^{*} Corresponding Author: Yao Wang, Email: wangyao@m.scnu.edu.cn

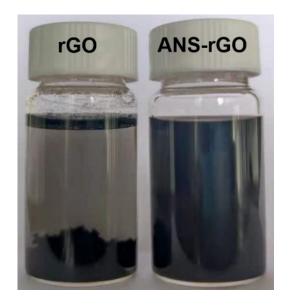


Figure S1. The photo pictures of pristine rGO and ANS-rGO water dispersions.



Figure S2. Particle size distribution of pure ZnO_x nanoparticles.

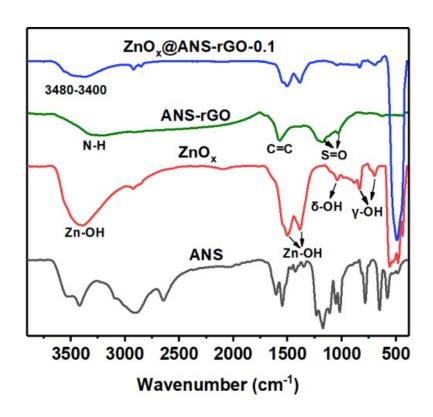


Figure S3. FTIR spectra of ANS, ZnO_x, ANS-rGO and ZnO_x@ANS-rGO-0.1 nanocomposites.

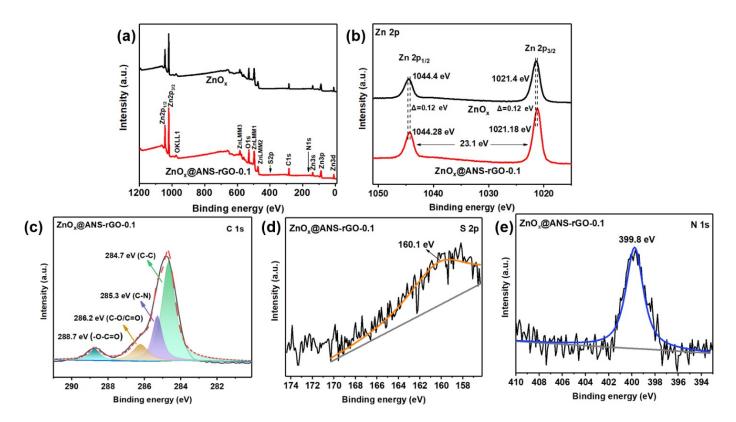


Figure S4. XPS survey spectra (a) of pure ZnO_x and $ZnO_x@ANS-rGO-0.1$; Zn region (b) of pure ZnO_x and $ZnO_x@ANS-rGO-0.1$; high-resolution spectra of C1s (c), S 2p (d) and N 1s (e) in $ZnO_x@ANS-rGO-0.1$.

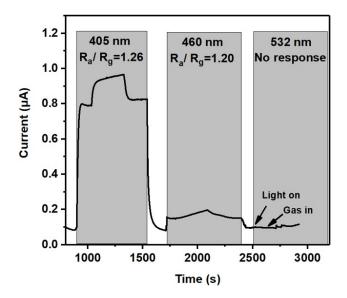


Figure S5. Typical response curve of 0.4 ppm HCHO under different wavelengths including 405, 460 and 532 nm visible light.

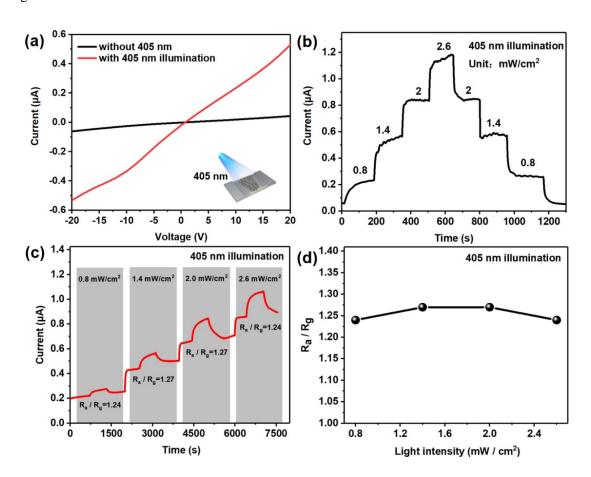


Figure S6. I-V characterizes (a) of ZnO_x@ANS-rGO-0.1 based sensor under 405 nm illumination and dark condition; Reproducibility (b) of the sensor upon 405 nm illumination with different light intensity; Typical response curve (c) of 0.4 ppm HCHO under different 405 nm light intensity (0.8-2.6 mW/cm²) and its corresponding response value (d).

Table S1 Comparison of the gas sensing performances for different samples

Samples	S	$T_{res}(s)$	$T_{rec}(s)$
ANS-rGO@ZnO _x -0.1	1.58	47	39
NA-rGO@ZnO _x -0.1	1.48	181	65
ANS-rGO@ZnO _x -0.01	1.37	87	40
ANS-rGO@ZnO _x -1	1.24	50	23
rGO/ZnO_x -0.1	1.18	156	111
ZnO_x	1.41	200	77
ANS-rGO	-	-	-

Sensitivity (S), Response time (T_{res}), Recovery time (T_{rec})

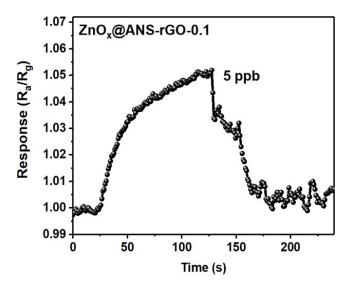


Figure S7. dynamic response of the $ZnO_x@ANS-rGO-0.1$ based sensor toward 5 ppb HCHO under 405 nm illumination.

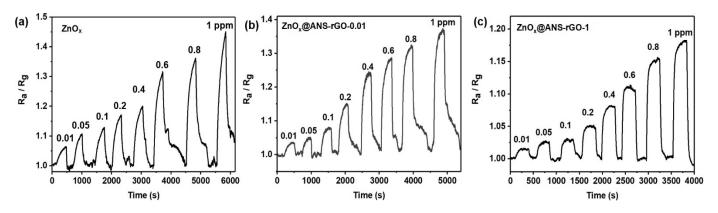


Figure S8. Response curves of ZnO_x (a), $ZnO_x@ANS-rGO-0.01$ (b) and $ZnO_x@ANS-rGO-1$ (c) based sensors to HCHO at concentration vary from 0.01 ppm to 1 ppm under 405 nm visible light illumination.

Table S2 Comparison of HCHO concentration detected by our sensor and ultraviolet spectrophotometer (calibration)

Number	Our sensor (ppb)	Calibration (ppb)
1	925	893
2	824	829
3	598	551
4	345	323
5	222	190

Figure S9. Picture of a 30 m3 test chamber we used in Guangdong Mixwell Technology Co., Ltd. for this work.

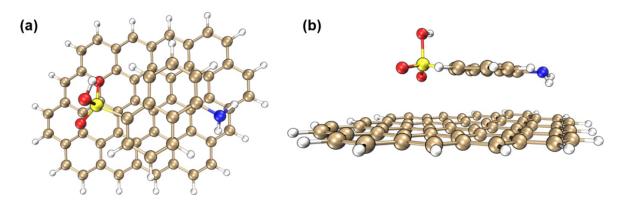


Figure S10. Optimized geometries of the ANS-rGO molecular structures: (a) vertical view; (b) front view. (The detailed simulation procedure is shown in the computational details part)