Layered MAX phase electrocatalyst activity is driven by only a few hot spots

Katarina A. Novčić^a, Christian Iffelsberger^a and Martin Pumera^{*a,b,c,d}

^a Future Energy and Innovation Laboratory, Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 61200 Brno, Czech Republic

^b Energy Research Institute @ NTU (ERI@N), Research Techno Plaza, X-Frontier Block, Level

5, 50 Nanyang Drive, Singapore

^c Department of Medical Research, China Medical University Hospital, China Medical University,

No. 91 Hsueh-Shih Road, Taichung 40402, Taiwan

^d Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea

*e-mail: pumera.research@gmail.com

Figure S1. SEM micrograph of the Mo₂TiAlC₂ microparticles

Figure S2. X-ray diffraction pattern of the Mo_2TiAlC_2 sample without Nafion with indicated crystal phases.

Figure S3. Probe approach curves (PACs) for the theoretically calculated positive and negative feedback (dash lines) with the measured curves for glass (black), gold (gray), glassy carbon (GC) (green), glassy carbon covered with Nafion (nafion@GC) (yellow) and Mo₂TiAlC₂ film (magenta). The PACs measurements were performed with 25 μ m diameter Pt UME in FcMeOH mediator solution with UME tip potential of 0.64 V (vs RHE). A max. approach speed of 1 μ m s⁻¹, step width of 1 μ m and waiting time of 0 ms was used.

Figure S4. Optical image of the Mo₂TiAlC₂ film with marked scanning area (red).

Figure S5. Scanning electrochemical image of the Mo_2TiAlC_2 film recorded in substrate generation/tip collection mode in 0.5 M H₂SO₄ solution with the tip potential of 0.1 V and generation hydrogen potential of -0.55 V, with labeled high (1), medium (2) and low (3) HER active points. For imaging a maximum scan rate of 300 µm s⁻¹, pixel size of 10 x 10 µm and waiting time of 4 ms was used. The SECM image was recorded with 25 µm diameter Pt disc UME.

Figure S6. Optical microscopic characterization of the Mo₂TiAlC₂ films performed by confocal laser scanning microscopy (CLSM) with 100x lenses. (A) Color CLSM image of the 22 x 22 μ m² surface area, (B) corresponding false-color image with indicated line roughness measurements (black lines), V-vertical line and H-horizontal line.

Line	R _q / μm
Vertical 1 (V1)	0.152
Vertical 2 (V2)	0.127
Vertical 3 (V3)	0.145
Vertical 4 (V4)	0.142
Vertical 5 (V5)	0.160
Horizontal 1 (H1)	0.154
Horizontal 2 (H2)	0.139
Horizontal 3 (H3)	0.151
Horizontal 4 (H4)	0.112
Horizontal 5 (H5)	0.167

Table S1. R_q values of the line roughness measurements of the Mo₂TiAlC₂ film.

Figure S7. Atomic force microscopy (AFM) analysis of the Mo₂TiAlC₂ films. (A) AFM image of the Mo₂TiAlC₂ particle, (B) extracted line scan profile corresponding to the dashed line in (A).

Scheme S1. (A) Schematic illustration of the Mo_2TiAlC_2 sample preparation with (B) the optical image of the prepared Mo_2TiAlC_2 film.

Figure S8. Cyclic voltammogram of 25 μ m diameter Pt UME tip probe. Measurement was done in 1.5 mM FcMeOH and 0.2 M KNO₃ mediator solution with a scan rate of 50 mV s⁻¹.