Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Mxene-modulated 3D crosslinking network of hierarchical flower-

like MOF derivatives towards ultra-efficient microwave

absorption property

Hui-Ya Wang, Xiao-bo Sun, Guang-Sheng Wang*

XPS was applied to further clarify the state bonding between CO (CN₁O) and $Ti_3C_2T_x$ MXene. As shown in Fig. S4a, the high resolution XPS of Ti 2p spectrum can be fitted into four main peaks corresponding to the Ti-C, Ti²⁺, Ti³⁺, and Ti-O, respectively. Compared with $Ti_3C_2T_x$ MXene, the percentage of Ti-O bond increases in the COT and CN₁OT composites, whereas no diffraction peak can be assigned to TiO₂ in XRD pattern. It implies CO (CN₁O) can be successfully grown on the surface of $Ti_3C_2T_x$ MXene via strong covalent bond interaction (O–C=O, Ti-O) rather than simply physical contact. This can be further evidenced by Ti 2p peaks of COT and CN₁OT composites migrate to lower regions of binding energy in contrast with $Ti_3C_2T_x$ MXene.^[1] For COT and CN₁OT, the high-resolution XPS spectrums (Fig. S4b) reveal Co 2p is composed of the characteristic spin orbits of Co²⁺ and Co³⁺ and two satellite peaks, indicating that Co has +2 and +3 oxidation states. As displayed in Fig. S4c, the fitting peaks at 854.6 and 871.8 eV belong to Ni²⁺, while the peaks at 856.6 and 873.7 eV are assigned to Ni³⁺. Two remaining peaks at 861.5 and 878.8 eV 8 are related to satellite peaks of Ni 2p_{3/2} and Ni 2p_{1/2}, respectively.^[2]

References

- 1. R. Zhang, Z. Xue, J. Qin, M. Sawangphruk, X. Zhang, R. Liu, J. Energy Chem., 2020, 50, 143–153.
- 2. H. Hu, J. Liu, Z. Xu, L. Zhang, B. Cheng, W. Ho, Appl. Surf. Sci., 2019, 478, 981–990.

Sample	Zeta potential		
	(mV)		
Ti ₃ C ₂ T _x	-30.7		
CM	25.9		
CN_1M	47.3		
CN ₅ M	33.5		
CN ₉ M	29.8		
CMT	-2.5		
CN ₁ MT	-0.8		
CN ₅ MT	-12.0		
CN ₉ MT	-11.3		

Table S1 Zeta potentials of as-prepared samples.

Fig. S1 TEM image of (a,b) $Ti_3C_2T_x$ nanosheets and (c,d) CM flowers.

Fig. S2 SEM image of various samples, (a) CM, (b) CO, (c) COT, (d) CN_1M , (e) CN_1O , (f) CN_1OT .

Fig. S3 SEM images of (a) CN_5M , (b) CN_5OT , (e) CN_9M and (f) CN_9OT composites, TEM images of (c,d) CN_5OT and (g,h) CN_9OT .

Fig. S4 High-resolution XPS spectra of (a) Ti 2p, (b) Co 2p and (c) Ni 2p of $Ti_3C_2T_x$, COT and CN₁OT.

Fig. S5 N_2 adsorption-desorption isotherm and pore size distribution of (a) CO and (b) CN_1O composites, respectively.

Table S2 The element content of Co and Ni in different CNO samples by ICP analysis.

Sample	CN ₁ O	CN ₅ O	CN ₉ O
Со	794.8	545.2	564.0
Ni	32.18	190.1	324.2
Co:Ni	24.7:1	2.87:1	1.74:1

Fig. S6 Images of CN₁OT composites on (a dandelion and (b) flower plates.

Fig. S7 2D RL curves of the COT-x series.

Fig. S8 2D RL curves of the CN1OT-x series

Fig. S9 2D RL curves of the CN_5OT -x and CN_9OT -x series

Fig. S10 2D RL curves of the COT and CNOT-x series.

Fig. S11 2D RL curves of pure MXene with different filler content in PVDF, (a) 5 wt%, (b) 10wt%, (c) 15wt% and (d) 20wt%.

Fig. S12 Frequency dependence of electromagnetic parameters for various composites, (a) complex permeability and (b) magnetic loss tangent of samples with 20 wt% loading, permeability of (c) CN_1OT-x with 10 wt% filler content and (d) CN_1OT-15 with different filler loading.

Fig. S13 The relationship between real and imaginary part of permittivity for various samples, (a) CO and CN_1O with filler content of 20 wt%, (c) COT and CN_1OT composites with 10 wt% filler loading.