Sorption-enhanced mixed-gas transport in amine functionalized

polymers of intrinsic microporosity (PIMs)

Katherine Mizrahi Rodriguez^{a,†}, Francesco M. Benedetti^{b,†}, Naksha Roy^b, Albert X. Wu^b, and

Zachary P. Smith^b

[†]These authors contributed equally.

^aDepartment of Materials Science and Engineering, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139, United States

^bDepartment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States

Table of Contents

1.	Sample information, materials, and methods	3
2.	Physical aging upper bound	5
3.	Variable-pressure mixed-gas permeation	6
4.	Other mixtures (CO ₂ /N ₂ , H ₂ /N ₂ , and H ₂ /CH ₄)	8
5.	Pure-gas sorption	9
6.	Mixed-gas sorption predictions	. 11
7.	Pure and mixed-gas plasticization	.14
8.	Reference literature data	. 18
9.	Sorption upper bound at infinite dilution	.23
Ref	erences	.24

1. Sample information, materials, and methods

Gas purity and suppliers. Pure- and mixed-gas permeation and sorption tests were performed using ultrahigh purity gases purchased from Airgas: H₂ (UHP300, 99.999%), CH₄ (UHP300, 99.999%), N₂ (UHP300, 99.999%), and CO₂ (UHP300, 99.999%).

Pure-gas permeation. Pure-gas permeation tests were performed at 35 °C and 1 atm using an automated constant-volume, variable-pressure system purchased from Maxwell Robotics. The temperature in the cell was maintained with a water bath using a Thermo Fisher SC150L water circulator. Polymer films of approximately 25 mm² in area were placed over a hole on a brass disk, and the edges of the film were attached to the disk using Devcon 5 min Epoxy. Samples were loaded into a stainless steel cell and tightly sealed with two concentric o-rings. At the beginning of a permeation test, the samples were de-gassed for 8 h under vacuum to remove environmental moisture or residual atmospheric gases. When switching between gases, the sample cell was flushed with helium and de-gassed under vacuum for at least 1 h. After conducting pure-gas tests at 1 atm, high-pressure CO₂ tests were performed up to fugacities of 29 atm. For each pressure point, samples were held for 0.5 h to ensure all samples had identical CO₂ exposure and sufficient time to reach steady state.

Polymer	<i>l</i> (μm)	t (days)	treatment 1 d after casting
PIM-1 (fresh)	58.0 ± 0.9	1	MeOH 24 h, 130 °C 12 h
PIM-1 (381 d)	43.8 ± 0.9	381	MeOH 24 h, 130 °C 12 h
PIM-NH ₂ (fresh)	49 ± 2	1	MeOH 24 h, 130 °C 12 h
PIM-NH₂ (290 d)	51 ± 2	290	MeOH 24 h, 130 °C 12 h
PIM-NH₂ (448 d)	67.2 ± 0.9	448	MeOH 24 h, 130 °C 12 h
PIM-NH ₂ (cond.)	82 ± 1	433	MeOH 24 h, 130 °C 12 h followed by a pure- gas CO ₂ conditioning test up to 31 atm
PIM-t-BOC	70 ± 9	351	MeOH 24 h, 130 °C 12 h
PIM-deBOC(acid)	65.0 ± 0.6	339	MeOH 24 h, 130 °C 12 h
PIM-deBOC(thermal)	83 ± 2	343	MeOH 24 h, 130 °C 12 h
PIM-1 (402 d)	46 ± 1	402	130 °C 12 h (labeled as "untreated")
PIM-COOH (330 d)	34.2 ± 0.8	330	130 °C 12 h (labeled as "untreated")

Table S1. Thickness (l), aging time (t), and treatment conditions for samples tested in mixtures.

Table S2. Critical temperature for gases considered in this work¹.

Gas	<i>T</i> _c (K)
H_2	33.2
N_2	126.2
CH ₄	190.5
CO ₂	304.1

2. Physical aging upper bound

Fig. S1. Upper bound performance for freshly treated films (half-filled symbols) and aged films (filled symbols) tested at 1 atm and 35 °C for CO_2/CH_4 separation. The 2008 pure-gas upper bound² and 2018 mixed-gas upper bound³ are shown for reference.

3. Variable-pressure mixed-gas permeation

Fig. S2. CO₂ mixed-gas permeabilities (filled circles) and CO₂/CH₄ selectivities (open diamonds) for incremental CO₂ compositions ranging from 10% to 90% CO₂ tested at a total pressure of approximately 2 atm for (a) treated and untreated PIM-1 (381d and 330d aged, respectively), (b) PIM-deBOC(thermal), (c) PIM-deBOC(acid), (d) PIM-*t*-BOC, and (e) PIM-COOH. Insets correspond to mixed-gas CH₄ mixed-gas permeabilities (filled triangles) for incremental CO₂ atm.

Fig. S3 Percent decrease in mixed-gas vs pure-gas CH_4 permeability measured at a CO_2 partial pressure of 1.2 atm compared to pure-gas sorption at infinite dilution for the aged PIM-1 derivatives considered in this study. No significant change was observed for PIM-tBOC.

4. Other mixtures (CO₂/N₂, H₂/N₂, and H₂/CH₄)

Fig. S4. (a) CO_2/N_2 , (b) H_2/N_2 , and (c) H_2/CH_4 upper bound plots for aged PIM-NH₂ (448 d) and an aged PIM-NH₂ sample previously conditioned at high CO_2 pressure (PIM-NH₂ (cond.)). Circles indicate pure-gas data and stars indicate mixed-gas data for the relevant mixture measured at 35 °C and 1 atm (pure-gas) and 2 atm total pressure (mixed-gas). H_2/CH_4 and H_2/N_2 plots include data for a freshly methanol treated PIM-NH₂ film.

5. Pure-gas sorption

Fig. S5. (a and b) CO₂, (c) CH₄, (d) O₂, and (e) N₂ sorption isotherms and dual-mode sorption fitting for methanol treated PIM-1, PIM-deBOC(thermal), PIM-NH₂, PIM-deBOC(acid) and PIM-*t*-BOC, measured at 35 °C. Reference CO₂ and CH₄ isotherms for untreated PIM-1 and PIM-COOH are also included in (a), (b), and (c)⁴.

Parameter ^a	Gas	PIM-1 ^b	PIM-NH ₂	PIM-t-BOC	PIM-deBOC (thermal)	PIM-deBOC (acid)	PIM-1 ^{c, 4}	PIM- COOH ^{d, 4}
	N_2	0.042	0.039	0.017	0.044	0.038	0.041	0.041
	O ₂	0.054	0.054	0.042	0.046	0.047	-	-
b (atm ⁻¹)	CH ₄	0.142	0.147	0.076	0.146	0.137	0.130	0.157
	CO ₂	0.518	1.006	0.427	0.768	0.895	0.491	0.516
	N ₂	0.32	0.29	0.10	0.19	0.16	0.24	0.24
k_D	02	0.46	0.42	0.17	0.30	0.26	-	-
$(\text{CIII}^{2}\text{STP}\text{ CIII}^{-1})$	CH ₄	0.75	0.68	0.33	0.52	0.48	0.61	0.57
,	CO ₂	3.5	3.1	2.6	3.1	3.2	3.2	2.6
	N ₂	48.1	43.4	25.6	52.2	45.8	46.0	26.5
C'_H	02	36.4	31.0	11.0	51.3	38.1	-	-
$(\mathrm{cm}^{3}_{\mathrm{STP}}\mathrm{cm}^{-3}_{\mathrm{pol}})$	CH ₄	62.4	54.3	27.3	68.5	59.7	60.9	34.8
	CO ₂	86.0	104.9	23.2	95.7	102.9	80.4	54.2
۲∞	N ₂	2.32	1.97	0.525	2.46	1.88	2.13	1.34
$(\text{cm}^3 \text{ cm}^{-3})$	02	2.43	2.10	0.629	2.65	2.06	-	-
STP CIII pol	CH ₄	9.64	8.65	2.41	10.5	8.64	8.54	6.05
atm^{-1})	CO ₂	48.0	109	12.5	76.6	95.3	42.7	30.5

Table S3. Dual mode sorption (DMS) model parameters and S_{∞} values calculated for all samples.

^aDMS parameters were calculated by constraining the slope of the $ln(k_D)$ versus critical temperature (T_c) trend to equal the slope of $\ln(S_{10atm})$ versus T_c^{5} . ^bPIM-1 film soaked in methanol for 24 h then vacuum-dried at 130 °C for 12 h.

°PIM-1 film vacuum-dried at 130 °C for 12 h, as reported elsewhere⁴.

^dPIM-COOH film vacuum-dried at 130 °C for 12 h, as reported elsewhere⁴.

6. Mixed-gas sorption predictions

Fig. S6. Pure-gas CO₂ and CH₄ experimental sorption isotherms, represented as filled and open symbols, respectively. Pure-gas DMS model fittings (solid lines), and mixed-gas CO₂ and CH₄ sorption predictions (dashed lines) for (a) methanol treated PIM-1, (b) methanol treated and untreated PIM-1, (c) PIM-deBOC(acid), (d) PIM-deBOC(thermal), (e) PIM-*t*-BOC, and (f) PIM-COOH. Fig. S6a includes experimental pure- and 50/50 CO₂/CH₄ mixed-gas data previously reported for PIM-1 by Vopička et al.⁶

Fig. S7. Pure-gas (solid lines) and 50/50 mixed-gas (dashed lines) CO₂/CH₄ sorption selectivities for (a) methanol treated and untreated PIM-1, (b) PIM-deBOC(acid), (c) PIM-deBOC(thermal), (d) PIM-*t*-BOC, and (e) PIM-COOH.

D.I.	Diffusion sel	ectivity $(\alpha_D)^a$	Sorption selectivity (α_s)			
Polymer	α_D^{pure}	α_D^{mixed}	α_{S}^{pure} b	$\alpha_S^{mixed c}$		
PIM-1 (MeOH, 381 d)	3.5 ± 0.3	3.2 ± 0.2	3.8 ± 0.1	5.0 ± 0.2		
PIM-1 (402 d)	3.6 ± 0.2	3.1 ± 0.2	3.8 ± 0.2	5.0 ± 0.2		
PIM-NH ₂ (290 d)	1.8 ± 0.2	2.5 ± 0.2	7.1 ± 0.3	11.9 ± 0.5		
PIM-deBOC(acid)	2.4 ± 0.1	2.7 ± 0.2	6.6 ± 0.1	10.8 ± 0.2		
PIM-deBOC(thermal)	4.4 ± 0.4	3.8 ± 0.3	4.6 ± 0.2	7.2 ± 0.3		
PIM-tBOC	4.5 ± 0.9	3.2 ± 0.6	4.1 ± 0.2	5.4 ± 0.3		
PIM-COOH (330 d)	9.8 ± 0.8	9.8 ± 0.8	4.0 ± 0.1	5.0 ± 0.2		

Table S4. Pure- and mixed-gas diffusion and sorption selectivities for aged samples determined atCO2 partial fugacities of 1 atm.

^aCalculated using the sorption–diffusion model and pure-gas sorption values or predicted mixedgas sorption values.

^bCalculated from DMS curves calculated with best-fit (i.e., unconstrained) parameters.

^cCalculated from mixed-gas DMS curves predicted with constrained DMS parameters.

7. Pure and mixed-gas plasticization

Fig. S8 (a) Normalized CO₂/CH₄ mixed-gas selectivities. Filled and open blue circles indicate data for PIM-NH₂ (448d) and PIM-NH₂ (290d), respectively. (b) CH₄ mixed-gas permeabilities, and (c) CO₂ mixed-gas permeabilities for PIMs considered in this work. Mixed-gas measurements were performed with 50/50 CO₂/CH₄ compositions at 35 °C. (d) Pure-gas CO₂ permeability for fresh PIM-NH₂, PIM-t-BOC, PIM-deBOC(acid), and PIM-deBOC(thermal) tested at 35 °C.

Fig. S9. *Fugacity-based:* (a) Normalized CO₂/CH₄ mixed-gas selectivities. Filled and open blue circles indicate data for PIM-NH₂ (448d) and PIM-NH₂ (290d), respectively. (b) CH₄ mixed-gas permeabilities, and (c) CO₂ mixed-gas permeabilities for PIMs considered in this work. Mixed-gas measurements were performed with 50/50 CO₂/CH₄ compositions at 35 °C. (d) Pure-gas CO₂ permeability for fresh PIM-NH₂, PIM-t-BOC, PIM-deBOC(acid), and PIM-deBOC(thermal) tested at 35 °C.

Fig. S10. Pure- (filled circles) and mixed-gas (open circles) (a) CO_2 and (b) CH_4 permeabilities for a PIM-NH₂ (fresh), PIM-NH₂ (448 d), and PIM-NH₂ (cond.). Arrows indicate the reduction in CO_2 or CH_4 permeabilities from pure-gas to mixed-gas tests. Mixed-gas (c) CO_2 and (d) CH_4 permeabilities for methanol treated (black) and untreated (gray) PIM-1 aged for 381 days and 402 days, respectively. (e) Normalized mixed-gas CH_4 permeabilities for PIM-NH₂ (fresh) and PIM-NH₂ (cond.) starting from a CO_2 partial pressure of 1.75 atm. Permeabilities were calculated with respect to pressure.

Fig. S11. *Fugacity-based:* Pure- (filled circles) and mixed-gas (open circles) (a) CO₂ and (b) CH₄ permeabilities for a PIM-NH₂ (fresh), PIM-NH₂ (448 d), and PIM-NH₂ (cond.). Arrows indicate the reduction in CO₂ or CH₄ permeabilities from pure-gas to mixed-gas tests. Mixed-gas (c) CO₂ and (d) CH₄ permeabilities for methanol treated (black) and untreated (gray) PIM-1 aged for 381 days and 402 days, respectively. (e) Normalized mixed-gas CH₄ permeabilities for PIM-NH₂ (fresh) and PIM-NH₂ (cond.) starting from a CO₂ partial fugacity of 1.75 atm. Permeabilities were calculated with respect to fugacity.

8. Reference literature data

Fig. S12. Pure-gas CO₂/CH₄ sorption selectivity and relevant chemical structures for the samples considered in **Fig. 5a.** Chemical functionality with potential for hydrogen bonding are denoted in red. Polymers from this work are enclosed in red dashed boxes. Structures with sorption and mixed-gas data taken from literature are enclosed in black dotted boxes, including PIM-2⁷, PIM-6FDA-OH and PIM-PMDA-OH⁸, PIM-Trip-TB⁹, 6FDA-DAM:DABA (3:2, 1:1, 1:2)¹⁰, KAUST-PI-1 and KAUST-PI-5¹¹, TPDA-APAF and TPDA-ATAF¹², 6FDA-TrMPD and 6FDA-TrMCA¹³, AO-PIM-1^{14,15}, PIM-CA (0.5, 1, 2, 3, and 10%)¹⁶, and PIM-1^{16–19}. Post-synthetically treated PIM-1 films were also plotted in **Fig. 5**, including PIM-UV (30 min)²⁰, TOX-PIM-1¹⁹

Polymer	Т (°С)	P _{Total} (psia)	CO ₂ /CH ₄ Comp.	P _{CH4} (barrer)	P _{CO2} (barrer)	$\alpha^{pure}_{CO_2/CH_4}$	$\alpha^{mixed}_{CO_2/CH_4}$	Ref.
P _{Total} = 29 psia								
PIM-2	25	14	pure	203.9	2960.9	14.5	-	7
PIM-2	-	29	35/65	457.2	6229.7	-	13.6	
PIM-Trip-TB	-	15	pure	310.5	4109.2	13.2	-	9

Table S5. Reference pure- and mixed-gas permeation data for CO₂/CH₄.

	1					1		I
PIM-Trip-TB	_	29	50/50	299.4	3913.7	-	13.1	
PIM-1	30	29	pure	363	4533	12.5	-	-
PIM-1	30	29	30/70	378.5	4391	-	11.6	21
PIM-1 (18.8% ZIF-8)	30	29	pure	157	2663	16.9	-	
PIM-1 (18.8% ZIF-8)	30	29	30/70	143	2832	-	19.8	
PIM-Trip-TB	25	14.7	pure	664	8616	12.9	-	
PIM-Trip-TB	25	29.4	50/50	979	7267	-	7.4	
CoPIM-TB-1	25	14.7	pure	575	7835	13.6	-	
CoPIM-TB-1	25	29.4	50/50	654	6271	-	9.6	
CoPIM-TB-2	25	14.7	pure	448	6767	15.1	-	22
CoPIM-TB-2	25	29.4	50/50	536	5818	-	10.9	
C-CoPIM-TB-1	25	14.7	pure	233	5437	23.3	-	
C-CoPIM-TB-1	25	29.4	50/50	264	5241	-	19.9	
C-CoPIM-TB-2	25	14.7	pure	169	4251	25.2	-	
C-CoPIM-TB-2	25	29.4	50/50	184	3931	-	21.4	
CF ₃ -ROMP	35	14.5	pure	644	6377	9.9	-	
CF ₃ -ROMP	35	29	50/50	779	7063	-	9.1	
CF ₃ -ROMP	35	14.5	pure	1086	8867	8.2	-	23
CF ₃ -ROMP	35	29	50/50	1151	9266	-	8.1	25
CF ₃ -ROMP	35	14.5	pure	2368	13418	5.7	-	
CF ₃ -ROMP	35	29	50/50	2183	15036	-	6.89	
PIM-MP-TB	35	14.5	pure	26	633	24.4	-	24
PIM-MP-TB	25	29	52.1/47.9	36	766	-	21.3	24
PIM-6FDA-OH	35	14.5	pure	9.1	263	28.9	-	
PIM-6FDA-OH	22	29	50/50	5.3	223	-	42.1	
PIM-PMDA-OH	35	14	pure	7.7	198	25.7	-	0
PIM-PMDA-OH	22	29	50/50	3	101	-	33.7	
PIM-TMN-Trip	25	14.6	pure	722	10910	15.1	-	25
PIM-TMN-Trip	25	29.1	60/40	489	11300	-	23.1	25
	1	L	$P_{Total} = 43.5 \text{ ps}$	ia				1
PIM-2	25	14.5	pure	203.9	2960.9	14.5	-	_
PIM-2	_	43.5	35/65	457.2	5898.6	-	12.9	7
PIM-TMN-Trip	25	29.1	pure	735	9773	13.3	-	
PIM-TMN-Trip	25	43.5	60/40	566	11390	-	20.1	25
PIM-EA(H ₂)-TB	_	14.5	pure	62.6	1391	22.2	-	
PIM-EA(H ₂)-TB	_	43.5	35/65	70.9	1373.5	-	19.4	26
PIM-SBF-1	25	14.5	pure	102	2410	23.6	-	
PIM-SBF-1	_	43.5	35/65	89.9	2780	-	30.9	
PIM-SBF-5	25	14.5	pure	925	10000	10.8	-	27
PIM-SBF-5	_	43.4	35/65	932	11100	-	11.9	
	I	L	$P_{Total} = 58 \text{ nsi}$	a		1		L
6FA-DAM:DABA 3:2	35	24.6	pure	4.2	185.9	44.3	-	
6FA-DAM:DABA 3:2	35	61.5	50/50	3.3	178.6	-	54.1	10
0111 011011011011012	55	01.0	00/00	2.5	1,0.0		0 1.1	

6FDA-DAM:DABA 1:1	35	22.9	pure	2.2	110.9	51.5	-	
6FDA-DAM:DABA 1:1	35	50.5	50/50	1.9	113.3	-	59.6	
6FDA-DAM:DABA 1:2	35	21.3	pure	0.8	41.7	54.2	-	
6FDA-DAM:DABA 1:2	35	52.7	50/50	0.5	43.1	-	86.2	
PIM-2	25	14.5	pure	203.9	2960.9	14.5	-	7
PIM-2	-	58	35/65	465.6	5636.2	-	12.1	
6FDA-mPDA	35	29.4	pure	0.2	14	70	-	
6FDA-mPDA	35	58	50/50	0.2	14.7	-	67.9	
6FDA-DAP	35	29.4	pure	0.1	11	91.7	-	28
6FDA-DAP	35	58	50/50	0.1	10.5	-	93.2	
6FDA-DAR	35	29.4	pure	0.1	8	94.1	-	
6FDA-DAR	35	58	50/50	0.1	7.5	-	94.8	
TDA1-APAF	35	29	pure	0.7	40	54.8	-	
TDA1-APAF	35	58	50/50	0.55	37	-	67.3	29
TDA1-APAF	35	29	pure	0.4	30	75	-	
TDA1-APAF	35	58	50/50	0.3	28	-	87.6	
PIM-1	22	58	pure	393	5147	13.1	-	
PIM-1	22	53.6	50/50	324	3897	-	12.0	30
TOX/PIM-1	22	58	pure	145	3892	26.8	-	50
TOX-PIM-1	22	56.6	50/50	28.3	1101	-	38.9	
TPDA-mPDA	35	29.4	pure	11	349	31.7	-	
TPDA-mPDA	35	59	50/50	9.7	293.5	-	30.3	31
TPDA-DAR	35	29.4	pure	4.7	215	46.2	-	
TPDA-DAR	35	58	50/50	3.9	180.4	-	46.7	
AO-PIM-1	35	29	pure	34	1153	33.9	-	
AO-PIM-1	35	58	50/50	35.5	847	-	23.9	14
PIM-1	35	29	pure	362	5919	16.4	-	
PIM-1	35	58	50/50	427	5630	-	13.2	
KAUST-PI-1	35	29	pure	97.5	2329	23.9	-	
KAUST-PI-1	35	58	50/50	97.5	2409	-	24.7	11
KAUST-PI-5	35	29	pure	79.2	1560	19.7	-	
KAUST-PI-5	35	58	50/50	67.3	1431	-	21.2	
TR PIM-6FDA-OH (440°C)	35	29	pure	54	816	15.1	-	32
TR PIM-6FDA-OH (440°C)	35	58	50/50	44	784	-	17.8	
TPDA-APAF 250	35	29	pure	0.9	46	52.9	-	
TPDA-APAF 250	35	58	50/50	0.6	39	-	60.9	
TPDA-APAF 120	35	29	pure	2.6	99	38.1	-	
TPDA-APAF 120	35	58	50/50	2.1	89	-	42.4	12
TPDA-ATAF 250	35	29	pure	3.8	125	32.8	-	
TPDA-ATAF 250	35	58	50/50	3.6	121	-	33.61	
TPDA-ATAF 120	35	29	pure	11	325	29.6	-	
TPDA-ATAF 120	35	58	50/50	10	299	-	29.9	
6FDA-TrMPD (6FDA-DAM)	35	29	pure	23	498	21.6	-	13

6FDA-TrMPD (6FDA-DAM) 35 58 50/50 19.1 448 - 23.4 6FDA-TrMCA 35 29 pure 3.2 144 45 - 6FDA-TrMCA 35 60 50/50 2.9 141 - 47.9 PIM-1 25 29 pure 536 6576 12.3 - 0FDA-DATRI 35 15 pure 6.2 189 30.5 - 6FDA-DATRI 35 58 50/50 - - - 28.7 6FDA-DATIOH 35 29 pure 1.4 70 50.0 - 6FDA-DATI-OH 35 58 50/50 1.51 69.5 - 46.0 6FDA-DATI 35 29 pure 2.82 102.25 36.3 - 6FDA-DAT2 35 58 50/50 4.64 138.75 - 29.9 PIM-TMN-Trip 25 58 60/40	33 34 35 36
ofFDA-TrMCA 35 29 pure 3.2 144 45 . ofFDA.TrMCA 35 60 50/50 2.9 141 . 47.9 PIM-1 25 29 pure 536 6576 12.3 . PIM-1 25 58 50/50 409 5840 . 14.3 ofFDA-DATRI 35 58 50/50 . . . 28.7 ofFDA-DATI-OH 35 58 50/50 1.51 69.5 . 46.0 ofFDA-DATI-OH 35 58 50/50 1.51 69.5 . 46.0 ofFDA-DATI 35 58 50/50 2.52 96 . 38.1 ofFDA-DAT2 35 58 50/50 4.64 138.75 . 29.9 PIM-TMN-Trip 25 54 pure 7.30 10880 14.9 . ePIM-1/Matrimid (10.90) 35 51 pure <td>33 34 35 36</td>	33 34 35 36
6FDA-TrMCA 35 60 50/50 2.9 141 47.9 PIM-1 25 29 pure 536 6576 12.3 PIM-1 25 58 50/50 409 5840 14.3 6FDA-DATRI 35 15 pure 6.2 189 30.5 6FDA-DATI-OH 35 58 50/50 2.87 6FDA-DATI-OH 35 58 50/50 1.51 69.5 46.0 6FDA-DAT1 35 58 50/50 2.52 96 38.1 6FDA-DAT2 35 58 50/50 4.64 138.75 29.9 PIM-TMN-Trip 25 58 60/40 594 10730 . 18.1 PIM-TMN-Trip 25 58 60/40 594 10730 . 28.4 cPIM-1/Matrimid (10:90) 35 51 pure <t< td=""><td>33 34 35 36</td></t<>	33 34 35 36
PIM-1 25 29 pure 536 6576 12.3 . PIM-1 25 58 50/50 409 5840 . 14.3 6FDA-DATRI 35 15 pure 6.2 189 30.5 . 6FDA-DATRI 35 58 50/50 - - . 28.7 6FDA-DATI-OH 35 29 pure 1.4 70 50.0 . 6FDA-DAT1-OH 35 58 50/50 1.51 69.5 . 46.0 6FDA-DAT1 35 58 50/50 2.52 96 . 38.1 6FDA-DAT2 35 58 50/50 4.64 138.75 . 29.9 PIM-TMN-Trip 25 58 60/40 594 10730 . 18.1 PIM-TMN-Trip 25 58 60/50 0.5 13.9 . 28.4 cPIM-I/Matrimid (10:90) 35 51 pure	33 34 35 36
PIM-1 25 58 50/50 409 5840 - 14.3 6FDA-DATRI 35 15 pure 6.2 189 30.5 - 6FDA-DATRI 35 58 50/50 - - 28.7 6FDA-DATI-OH 35 29 pure 1.4 70 50.0 - 6FDA-DAT1-OH 35 58 50/50 1.51 69.5 - 46.0 6FDA-DAT1 35 58 50/50 2.52 96 - 38.1 6FDA-DAT2 35 58 50/50 4.64 138.75 - 29.9 PIM-TMN-Trip 25 58 60/40 594 10730 - 18.1 0FDA-DAT2 35 51 pure 0.6 17.9 32.5 - 9IM-TMN-Trip 25 58 60/40 594 10730 - 28.4 cPIM-I/Matrimid (10.90) 35 51 pure 1.7 </td <td>34 35 36</td>	34 35 36
6FDA-DATRI 35 15 pure 6.2 189 30.5 . 6FDA-DATRI 35 58 50/50 - - 28.7 6FDA-DATI-OH 35 29 pure 1.4 70 50.0 - 6FDA-DAT1-OH 35 58 50/50 1.51 69.5 - 46.0 6FDA-DAT1 35 58 50/50 2.52 96 - 38.1 6FDA-DAT2 35 58 50/50 4.64 138.75 - 29.9 6FDA-DAT2 35 58 50/50 4.64 138.75 - 29.9 PIM-TNN-Trip 25 44 pure 730 10880 14.9 - CPIM-1/Matrimid (10.90) 35 51 pure 0.6 17.9 32.5 - cPIM-1/Matrimid (0.90) 35 51 pure 1.7 48.7 27.9 - cPIM-1/Matrimid (0.90) 35 51	34 35 36
6FDA-DATRI 35 58 50/50 - - 2.8.7 6FDA-DATI-OH 35 29 pure 1.4 70 50.0 - 6FDA-DAT1-OH 35 58 50/50 1.51 69.5 - 46.0 6FDA-DAT1 35 29 pure 2.82 102.25 36.3 - 6FDA-DAT1 35 58 50/50 2.52 96 - 38.1 6FDA-DAT2 35 58 50/50 4.64 138.75 - 29.9 PIM-TMN-Trip 25 44 pure 730 10880 14.9 - PIM-TMN-Trip 25 58 60/40 594 1070 - 18.1 CPIM-1/Matrimid (10:90 35 51 pure 0.6 17.9 32.5 - cPIM-1/Matrimid (0:900 35 51 pure 1.7 48.7 27.9 - cPIM-1/Matrimid (0:070) 35 51	35 36
6FDA-DATI-OH 35 29 pure 1.4 70 50.0 6FDA-DATI-OH 35 58 50/50 1.51 69.5 46.0 6FDA-DAT1 35 58 50/50 2.52 96 38.1 6FDA-DAT1 35 58 50/50 2.52 96 38.1 6FDA-DAT2 35 58 50/50 4.64 138.75 29.9 6FDA-DAT2 35 58 50/50 4.64 138.75 29.9 PIM-TMN-Trip 25 58 60/40 594 10730 18.1 CPIM-1/Matrimid (10:90) 35 51 pure 0.6 17.9 32.5 cPIM-1/Matrimid (0:90) 35 51 pure 1.7 48.7 27.9 cPIM-1/Matrimid (0:70) 35 51 pure 6.1 145 23.8 cPIM-1/Matrimid (0:70)	35
6FDA-DATI-OH 35 58 50/50 1.51 69.5 . 46.0 6FDA-DATI 35 29 pure 2.82 102.25 36.3 . 6FDA-DATI 35 58 50/50 2.52 96 . 38.1 6FDA-DAT2 35 29 pure 5.22 155.75 29.8 . 6FDA-DAT2 35 58 50/50 4.64 138.75 . 29.9 PIM-TMN-Trip 25 54 pure 730 10880 14.9 . CPIM-I/Matrimid (10:90) 35 51 pure 0.6 17.9 32.5 . cPIM-I/Matrimid (0:90) 35 51 pure 1.7 48.7 27.9 . cPIM-I/Matrimid (0:70) 35 51 pure 1.7 48.7 27.9 . cPIM-I/Matrimid (0:70) 35 51 pure 6.1 145 23.8 . cPIM-I/Matrimid (0:050)	36
6FDA-DAT1 35 29 pure 2.82 102.25 36.3 . 6FDA-DAT1 35 58 50/50 2.52 96 - 38.1 6FDA-DAT2 35 29 pure 5.22 155.75 29.8 - 6FDA-DAT2 35 58 50/50 4.64 138.75 - 29.9 PIM-TMN-Trip 25 44 pure 730 10880 14.9 - 6FDA-DAT2 35 58 60/40 594 10730 - 18.1 PIM-TMN-Trip 25 58 60/40 594 10730 - 18.1 cPIM-1/Matrimid (10:90) 35 51 pure 0.6 17.9 32.5 - cPIM-1/Matrimid (10:90) 35 51 pure 1.7 48.7 27.9 - cPIM-1/Matrimid (30:70) 35 51 pure 6.1 145 23.8 - cPIM-1/Matrimid (30:70)	36
6FDA-DAT1 35 58 50/50 2.52 96 . 38.1 6FDA-DAT2 35 29 pure 5.22 155.75 29.8 . 6FDA-DAT2 35 58 50/50 4.64 138.75 . 29.9 PIM-TMN-Trip 25 44 pure 730 10880 14.9 . PIM-TMN-Trip 25 58 60/40 594 10730 . 18.1 Protal = 58 psiz CPIM-1/Matrimid (10:90) 35 51 pure 0.6 17.9 32.5 . cPIM-1/Matrimid (30:70) 35 51 pure 1.7 48.7 27.9 . cPIM-1/Matrimid (30:70) 35 51 pure 6.1 145 23.8 . cPIM-1/Matrimid (30:70) 35 51 pure 6.7 131 . 19.6 cPIM-1/Matrimid (30:70) 35 103 50/50 6.7 131 .	36
6FDA-DAT2 35 29 pure 5.22 155.75 29.8 . 6FDA-DAT2 35 58 50/50 4.64 138.75 . 29.9 PIM-TMN-Trip 25 44 pure 730 10880 14.9 . PIM-TMN-Trip 25 58 60/40 594 10730 . 18.1 PIM-TMN-Trip 25 58 60/40 594 10730 . 18.1 Protal = 58 psia CPIM-1/Matrimid (10:90) 35 51 pure 0.6 17.9 32.5 . cPIM-1/Matrimid (10:90) 35 103 50/50 0.5 13.9 . 28.4 cPIM-1/Matrimid (30:70) 35 103 50/50 1.8 43.2 . 24.3 cPIM-1/Matrimid (50:50) 35 103 50/50 6.7 131 . 19.6 cPIM-1/Matrimid (70:30) 35 51 pure 57 9	
6FDA-DAT2 35 58 50/50 4.64 138.75 . 29.9 PIM-TMN-Trip 25 44 pure 730 10880 14.9 . PIM-TMN-Trip 25 58 60/40 594 10730 . 18.1 PIM-TMN-Trip 25 58 60/40 594 10730 . 18.1 CPIM-1/Matrimid (10:90) 35 51 pure 0.6 17.9 32.5 . cPIM-1/Matrimid (10:90) 35 51 pure 1.7 48.7 27.9 . cPIM-1/Matrimid (30:70) 35 51 pure 6.1 145 23.8 . cPIM-1/Matrimid (50:50) 35 51 pure 6.7 131 . 19.6 cPIM-1/Matrimid (50:50) 35 51 pure 25 486 19.4 . cPIM-1/Matrimid (70:30) 35 51 pure 57 982 17.2 .	
PIM-TMN-Trip 25 44 pure 730 10880 14.9 - PIM-TMN-Trip 25 58 60/40 594 10730 - 18.1 PTotal = 58 psia cPIM-1/Matrimid (10:90) 35 51 pure 0.6 17.9 32.5 - cPIM-1/Matrimid (10:90) 35 51 pure 0.6 17.9 32.5 - cPIM-1/Matrimid (0:90) 35 51 pure 1.7 48.7 27.9 - cPIM-1/Matrimid (30:70) 35 51 pure 6.1 145 23.8 - cPIM-1/Matrimid (50:50) 35 51 pure 6.7 131 - 19.6 cPIM-1/Matrimid (50:50) 35 51 pure 25 486 19.4 - cPIM-1/Matrimid (70:30) 35 51 pure 57 982 17.2 - cPIM-1/Matrimid (90:10) 35 51 pure 57 982 <td></td>	
PIM-TMN-Trip 25 58 60/40 594 10730 - 18.1 PTotal = 58 psia cPIM-1/Matrimid (10:90) 35 51 pure 0.6 17.9 32.5 - cPIM-1/Matrimid (10:90) 35 103 50/50 0.5 13.9 - 28.4 cPIM-1/Matrimid (30:70) 35 51 pure 1.7 48.7 27.9 - cPIM-1/Matrimid (30:70) 35 51 pure 6.1 145 23.8 - cPIM-1/Matrimid (50:50) 35 51 pure 6.7 131 - 19.6 cPIM-1/Matrimid (50:50) 35 51 pure 25 486 19.4 - cPIM-1/Matrimid (70:30) 35 51 pure 57 982 17.2 - cPIM-1/Matrimid (90:10) 35 51 pure 73 4000 54.8 - ePIM-1/Matrimid (90:10) 35 51 pure 73	25
P _{Total} = 58 psia cPIM-1/Matrimid (10:90) 35 51 pure 0.6 17.9 32.5 - cPIM-1/Matrimid (10:90) 35 103 50/50 0.5 13.9 - 28.4 cPIM-1/Matrimid (30:70) 35 51 pure 1.7 48.7 27.9 - cPIM-1/Matrimid (30:70) 35 51 pure 6.1 145 23.8 - cPIM-1/Matrimid (50:50) 35 51 pure 6.1 145 23.8 - cPIM-1/Matrimid (50:50) 35 51 pure 6.1 145 23.8 - cPIM-1/Matrimid (50:50) 35 51 pure 25 486 19.4 - cPIM-1/Matrimid (70:30) 35 51 pure 57 982 17.2 - cPIM-1/Matrimid (90:10) 35 51 pure 73 4000 54.8 - PIM-300-2.0d 35 51 pure 73	
cPIM-1/Matrimid (10:90) 35 51 pure 0.6 17.9 32.5 - cPIM-1/Matrimid (10:90) 35 103 50/50 0.5 13.9 - 28.4 cPIM-1/Matrimid (30:70) 35 51 pure 1.7 48.7 27.9 - cPIM-1/Matrimid (30:70) 35 103 50/50 1.8 43.2 - 24.3 cPIM-1/Matrimid (50:50) 35 51 pure 6.1 145 23.8 - cPIM-1/Matrimid (50:50) 35 103 50/50 6.7 131 - 19.6 cPIM-1/Matrimid (50:50) 35 103 50/50 6.7 131 - 19.6 cPIM-1/Matrimid (70:30) 35 51 pure 25 486 19.4 - cPIM-1/Matrimid (90:10) 35 51 pure 57 982 17.2 - cPIM-1/Matrimid (90:10) 35 103 50/50 53.5 905 - 1	
cPIM-1/Matrimid (10:90) 35 103 50/50 0.5 13.9 - 28.4 cPIM-1/Matrimid (30:70) 35 51 pure 1.7 48.7 27.9 - cPIM-1/Matrimid (30:70) 35 103 50/50 1.8 43.2 - 24.3 cPIM-1/Matrimid (50:50) 35 51 pure 6.1 145 23.8 - cPIM-1/Matrimid (50:50) 35 51 pure 6.1 145 23.8 - cPIM-1/Matrimid (50:50) 35 51 pure 25 486 19.4 - cPIM-1/Matrimid (70:30) 35 51 pure 57 982 17.2 - cPIM-1/Matrimid (90:10) 35 51 pure 73 4000 54.8 - pIM-300-2.0d 35 50 pure 62.1 1869 30.1 - PIM-300-2.0d 35 100 50/50 42.9 2317 - 54.0 <	
cPIM-1/Matrimid (30:70) 35 51 pure 1.7 48.7 27.9 - cPIM-1/Matrimid (30:70) 35 103 50/50 1.8 43.2 - 24.3 cPIM-1/Matrimid (50:50) 35 51 pure 6.1 145 23.8 - cPIM-1/Matrimid (50:50) 35 103 50/50 6.7 131 - 19.6 cPIM-1/Matrimid (70:30) 35 51 pure 25 486 19.4 - cPIM-1/Matrimid (70:30) 35 51 pure 57 982 17.2 - cPIM-1/Matrimid (90:10) 35 51 pure 57 982 17.2 - cPIM-1/Matrimid (90:10) 35 51 pure 73 4000 54.8 - PIM-300-2.0d 35 50 pure 62.1 1869 30.1 - PIM-UV 20min 35 50 pure 62.1 1869 30.1 -	
cPIM-1/Matrimid (30:70) 35 103 50/50 1.8 43.2 - 24.3 cPIM-1/Matrimid (50:50) 35 51 pure 6.1 145 23.8 - cPIM-1/Matrimid (50:50) 35 103 50/50 6.7 131 - 19.6 cPIM-1/Matrimid (70:30) 35 51 pure 25 486 19.4 - cPIM-1/Matrimid (70:30) 35 51 pure 25 486 19.4 - cPIM-1/Matrimid (70:30) 35 103 50/50 22.8 417 - 18.3 cPIM-1/Matrimid (90:10) 35 51 pure 57 982 17.2 - cPIM-1/Matrimid (90:10) 35 103 50/50 53.5 905 - 16.9 PIM-300-2.0d 35 51 pure 73 4000 54.8 - PIM-UV 20min 35 50 pure 62.1 1869 30.1 - <t< td=""><td></td></t<>	
cPIM-1/Matrimid (50:50) 35 51 pure 6.1 145 23.8 - cPIM-1/Matrimid (50:50) 35 103 50/50 6.7 131 - 19.6 cPIM-1/Matrimid (70:30) 35 51 pure 25 486 19.4 - cPIM-1/Matrimid (70:30) 35 51 pure 25 486 19.4 - cPIM-1/Matrimid (70:30) 35 51 pure 57 982 17.2 - cPIM-1/Matrimid (90:10) 35 51 pure 57 982 17.2 - cPIM-1/Matrimid (90:10) 35 51 pure 73 4000 54.8 - PIM-300-2.0d 35 51 pure 73 4000 54.8 - PIM-300-2.0d 35 50 pure 62.1 1869 30.1 - PIM-UV 20min 35 50 pure 62.1 1869 30.1 - PIM-	37
cPIM-1/Matrimid (50:50) 35 103 50/50 6.7 131 - 19.6 cPIM-1/Matrimid (70:30) 35 51 pure 25 486 19.4 - cPIM-1/Matrimid (70:30) 35 103 50/50 22.8 417 - 18.3 cPIM-1/Matrimid (90:10) 35 51 pure 57 982 17.2 - cPIM-1/Matrimid (90:10) 35 103 50/50 53.5 905 - 16.9 PIM-300-2.0d 35 51 pure 73 4000 54.8 - PIM-300-2.0d 35 100 50/50 42.9 2317 - 54.0 PIM-UV 20min 35 50 pure 62.1 1869 30.1 - PIM-UV 20min 35 50 pure 23.1 724 31.3 - PIM-UV 30min 35 100 50/50 20.4 724 - 35.5	
cPIM-1/Matrimid (70:30) 35 51 pure 25 486 19.4 - cPIM-1/Matrimid (70:30) 35 103 50/50 22.8 417 - 18.3 cPIM-1/Matrimid (90:10) 35 51 pure 57 982 17.2 - cPIM-1/Matrimid (90:10) 35 103 50/50 53.5 905 - 16.9 PIM-300-2.0d 35 51 pure 73 4000 54.8 - PIM-300-2.0d 35 100 50/50 42.9 2317 - 54.0 PIM-UV 20min 35 50 pure 62.1 1869 30.1 - PIM-UV 20min 35 50 pure 23.1 724 31.3 - PIM-UV 30min 35 50 pure 23.1 724 31.3 - PIM-UV 30min 35 100 50/50 20.4 724 - 35.5	
cPIM-1/Matrimid (70:30) 35 103 50/50 22.8 417 - 18.3 cPIM-1/Matrimid (90:10) 35 51 pure 57 982 17.2 - cPIM-1/Matrimid (90:10) 35 103 50/50 53.5 905 - 16.9 PIM-300-2.0d 35 51 pure 73 4000 54.8 - PIM-300-2.0d 35 100 50/50 42.9 2317 - 54.0 PIM-300-2.0d 35 100 50/50 61.3 1554 - - PIM-300-2.0d 35 50 pure 62.1 1869 30.1 - PIM-UV 20min 35 100 50/50 61.3 1554 - 25.4 PIM-UV 30min 35 50 pure 23.1 724 31.3 - PIM-UV 30min 35 100 50/50 20.4 724 - 35.5	
cPIM-1/Matrimid (90:10) 35 51 pure 57 982 17.2 - cPIM-1/Matrimid (90:10) 35 103 50/50 53.5 905 - 16.9 PIM-300-2.0d 35 51 pure 73 4000 54.8 - PIM-300-2.0d 35 100 50/50 42.9 2317 - 54.0 PIM-UV 20min 35 50 pure 62.1 1869 30.1 - PIM-UV 20min 35 100 50/50 61.3 1554 - 25.4 PIM-UV 30min 35 50 pure 23.1 724 31.3 - PIM-UV 30min 35 100 50/50 20.4 724 - 35.5	
cPIM-1/Matrimid (90:10) 35 103 50/50 53.5 905 - 16.9 PIM-300-2.0d 35 51 pure 73 4000 54.8 - PIM-300-2.0d 35 100 50/50 42.9 2317 - 54.0 PIM-UV 20min 35 50 pure 62.1 1869 30.1 - PIM-UV 20min 35 100 50/50 61.3 1554 - 25.4 PIM-UV 20min 35 50 pure 23.1 724 31.3 - PIM-UV 30min 35 100 50/50 20.4 724 - 35.5	
PIM-300-2.0d 35 51 pure 73 4000 54.8 - PIM-300-2.0d 35 100 50/50 42.9 2317 - 54.0 PIM-UV 20min 35 50 pure 62.1 1869 30.1 - PIM-UV 20min 35 100 50/50 61.3 1554 - 25.4 PIM-UV 20min 35 50 pure 23.1 724 31.3 - PIM-UV 30min 35 100 50/50 20.4 724 - 35.5	
PIM-300-2.0d 35 100 50/50 42.9 2317 - 54.0 PIM-UV 20min 35 50 pure 62.1 1869 30.1 - PIM-UV 20min 35 100 50/50 61.3 1554 - 25.4 PIM-UV 20min 35 50 pure 23.1 724 31.3 - PIM-UV 30min 35 100 50/50 20.4 724 - 35.5	20
PIM-UV 20min 35 50 pure 62.1 1869 30.1 - PIM-UV 20min 35 100 50/50 61.3 1554 - 25.4 PIM-UV 30min 35 50 pure 23.1 724 31.3 - PIM-UV 30min 35 100 50/50 20.4 724 - 35.5	28
PIM-UV 20min 35 100 50/50 61.3 1554 - 25.4 PIM-UV 30min 35 50 pure 23.1 724 31.3 - PIM-UV 30min 35 100 50/50 20.4 724 31.3 - PIM-UV 30min 35 100 50/50 20.4 724 - 35.5	
PIM-UV 30min 35 50 pure 23.1 724 31.3 - PIM-UV 30min 35 100 50/50 20.4 724 - 35.5	20
PIM-UV 30min 35 100 50/50 20.4 724 - 35.5	20
PIM-1 22 58.0 pure 397 5135 12.9 -	
PIM-1 22 116 50/50 298 3020 - 10.1	
TOX-PIM-1 22 58 pure 15.9 1100 69.2 -	10
TOX-PIM-1 22 116 50/50 20.4 890 - 43.6	19
TOX-PIM-1 22 58 pure 58 1956 33.7 -	
TOX-PIM-1 22 116 50/50 38.2 1390 - 36.4	
Ultem/PIM-1 (90/10) 35 50 pure 0.1 4 32.9 -	20
Ultem/PIM-1 (90/10) 35 100 50/50 0.1 3.4 - 37.4	39
cPIM-1/Torlon (10/90) 35 51 pure - 1.2 39.8 -	
cPIM-1/Torlon (10/90) 35 102 50/50 - 1.1 - 39.3	
cPIM-1/Torlon (30/70) 35 51 pure 0.1 4.8 34.4 -	40

cPIM-1/Torlon (30/70)	35	102	50/50	0.1	4.5	-	34.8	
cPIM-1/Torlon (50/50)	35	51	pure	0.7	21.4	30.6	-	
cPIM-1/Torlon (50/50)	35	102	50/50	0.7	19.5	-	29.9	
AO-PIM-1	35	14	pure	29	980.7	33.8	-	
AO-PIM-1	35	87	50/50	35	700	-	20	41
AO-PIM-1 (9% adamantane)	35	14	pure	82.5	2483.6	30.1	-	
AO-PIM-1 (9% adamantane)	35	87	50/50	73.3	1320	-	18	
PIM-1	30	29	pure	361.7	4521	12.5	-	18
PIM-1	30	96	30/70	359.8	4318	-	12	
PIM-1	35	51.4	pure	198	3127	15.8	-	
PIM-1	35	102	50/50	228	2708	-	11.9	
PIM-CA-0.5%	35	51	pure	267	4388	16.4	-	
PIM-CA-0.5%	35	102	50/50	304	3993	-	13.1	
PIM-CA-1%	35	51	pure	282	4878	17.3	-	
PIM-CA-1%	35	102	50/50	331	4602	-	13.9	16
PIM-CA-2%	35	51	pure	232	4469	19.3	-	
PIM-CA-2%	35	102	50/50	283	4226	-	14.9	
PIM-CA-3%	35	51	pure	204	4139	20.3	-	
PIM-CA-3%	35	102	50/50	257	4031	-	15.7	
PIM-CA-10%	35	51	pure	97	2738	28.2	-	
PIM-CA-10%	35	102	50/50	113	2284	-	20.2	
PIM-1	30	29	pure	363	4521	12.5	-	17
PIM-1	30	96	30/70	377	4336	-	11.5	
PIM-EA(ME ₂)-TB	25	29	pure	50	1320	26.4	-	
PIM-EA(ME ₂)-TB	35	88	50/50	118	1626	-	13.8	
PIM-EA(ME ₂)-TB (10% PAF-1)	35	44	pure	833	6329	7.6	-	42
PIM-EA(ME ₂)-TB (10% PAF-1)	35	88	50/50	1085	7237	-	6.7	
PIM-EA(H2)-TB (10% PAF-1)	35	44	pure	286	4429	15.5	-	
PIM-EA(H ₂)-TB (10% PAF-1)	35	88	50/50	511	4842	-	9.5	
6FA-DAM:DABA 3:2	35	55	pure	3.98	166	41.7	-	
6FA-DAM:DABA 3:2	35	109	50/50	3.3	163	-	49.4	
6FDA-DAM:DABA 1:1	35	52	pure	1.94	102	52.6	-	10
6FDA-DAM:DABA 1:1	35	106	50/50	1.9	108	-	56.8	
6FDA-DAM:DABA 1:2	35	50	pure	0.65	37	56.9	-	
6FDA-DAM:DABA 1:2	35	100	50/50	0.45	39	-	86.7	

9. Sorption upper bound at infinite dilution

 $S_{\infty}(CO_2)$ (cm³_{STP} cm⁻³_{pol} atm⁻¹)

Fig. S13. CO₂/CH₄ 2014 pure-gas sorption upper bound⁴³ at infinite dilution. Plotted data are AO-PIM-1¹⁵ (dark blue circle), TZ-PIM-1¹⁵ (pink circle), PIM-1⁶ (black circle), PIM-Trip-TB⁹ (brown circle), amine-functionalized polysulfone⁴⁴ (light blue circle), methanol treated PIM-1 (gray star), untreated PIM-1 (black star), PIM-NH₂ (light blue star), PIM-deBOC(acid) (orange star), PIMdeBOC(thermal) (green star), PIM-*t*-BOC (red star), and PIM-COOH (purple star). Sorption and CO₂/CH₄ sorption selectivities at infinite dilution were calculated from best-fit DMS modeling of pure-gas sorption data for the six PIM samples included in this work. Literature values for microporous polymers are discussed in work by Genduso et al.^{9,45}

References

- 1 S. Matteucci, Y. Yampolskii, B. D. Freeman and I. Pinnau, *Mater. Sci. Membr. Gas Vap. Sep.*, 2006, 1–47.
- 2 L. M. Robeson, J. Membr. Sci., 2008, **320**, 390–400.
- 3 Y. Wang, X. Ma, B. S. Ghanem, F. Alghunaimi, I. Pinnau and Y. Han, *Mater. Today Nano*, 2018, **3**, 69–95.
- 4 K. Mizrahi Rodriguez, A. X. Wu, Q. Qian, G. Han, S. Lin, F. M. Benedetti, H. Lee, W. S. Chi, C. M. Doherty and Z. P. Smith, *Macromolecules*, 2020, **53**, 6220–6234.
- 5 Z. P. Smith, D. F. Sanders, C. P. Ribeiro, R. Guo, B. D. Freeman, D. R. Paul, J. E. McGrath and S. Swinnea, *J. Membr. Sci.*, 2012, **415–416**, 558–567.
- 6 O. Vopička, M. G. De Angelis, N. Du, N. Li, M. D. Guiver and G. C. Sarti, *J. Membr. Sci.*, 2014, **459**, 264–276.
- 7 A. Fuoco, B. Satilmis, T. Uyar, M. Monteleone, E. Esposito, C. Muzzi, E. Tocci, M. Longo, M. P. De Santo, M. Lanč, K. Friess, O. Vopička, P. Izák and J. C. Jansen, J. Membr. Sci., 2020, 594, 117460.
- 8 X. Ma, R. Swaidan, Y. Belmabkhout, Y. Zhu, E. Litwiller, M. Jouiad, I. Pinnau and Y. Han, *Macromolecules*, 2012, **45**, 3841–3849.
- 9 G. Genduso, Y. Wang, B. S. Ghanem and I. Pinnau, J. Membr. Sci., 2019, 584, 100–109.
- 10 Z. Liu, Y. Liu, W. Qiu and W. J. Koros, Angew. Chemie., 2020, 59, 14877–14883.
- 11 R. Swaidan, B. Ghanem, M. Al-Saeedi, E. Litwiller and I. Pinnau, *Macromolecules*, 2014, **47**, 7453–7462.
- 12 R. Swaidan, B. Ghanem, E. Litwiller and I. Pinnau, J. Membr. Sci., 2015, 475, 571–581.
- 13 M. A. Abdulhamid, G. Genduso, Y. Wang, X. Ma and I. Pinnau, *Ind. Eng. Chem. Res.*, 2020, **59**, 5247–5256.
- 14 R. Swaidan, B. S. Ghanem, E. Litwiller and I. Pinnau, J. Membr. Sci., 2014, 457, 95–102.
- 15 A. E. Gemeda, Solubility, Diffusivity and Permeability of Gases in Glassy Polymers. Ph.D. Thesis, Università di Bologna, Bologna, Italy, 2015.
- 16 J. Wu, J. Liu and T. S. Chung, Adv. Sustain. Syst., 2018, 2, 1800044.
- 17 X. Wu, W. Liu, H. Wu, X. Zong, L. Yang, Y. Wu, Y. Ren, C. Shi, S. Wang and Z. Jiang, J. Membr. Sci., 2018, 548, 309–318.
- 18 X. Wu, Y. Ren, G. Sui, G. Wang, G. Xu, L. Yang, Y. Wu, G. He, N. Nasir, H. Wu and Z. Jiang, *AIChE J.*, 2020, **66**, e16800.
- 19 Q. Song, S. Cao, R. H. Pritchard, B. Ghalei, S. A. Al-Muhtaseb, E. M. Terentjev, A. K. Cheetham and E. Sivaniah, *Nat. Commun.*, 2014, **5**, 4813.
- 20 F. Y. Li, Y. Xiao, Y. K. Ong and T. S. Chung, Adv. Energy Mater., 2012, 2, 1456–1466.

- 21 Y. Wang, Y. Ren, H. Wu, X. Wu, H. Yang, L. Yang, X. Wang, Y. Wu, Y. Liu and Z. Jiang, *J. Membr. Sci.*, 2020, **602**, 117970.
- 22 C. Zhang, L. Fu, Z. Tian, B. Cao and P. Li, J. Membr. Sci., 2018, 556, 277–284.
- 23 Y. He, F. M. Benedetti, S. Lin, C. Liu, Y. Zhao, H. Z. Ye, T. Van Voorhis, M. G. De Angelis, T. M. Swager and Z. P. Smith, *Adv. Mater.*, 2019, **31**, 1807871.
- 24 R. Williams, L. A. Burt, E. Esposito, J. C. Jansen, E. Tocci, C. Rizzuto, M. Lanč, M. Carta and N. B. McKeown, *J. Mater. Chem. A*, 2018, **6**, 5661–5667.
- 25 P. Stanovsky, M. Karaszova, Z. Petrusova, M. Monteleone, J. C. Jansen, B. Comesaña-Gándara, N. B. McKeown and P. Izak, *J. Membr. Sci.*, 2021, **618**, 118694.
- 26 E. Esposito, I. Mazzei, M. Monteleone, A. Fuoco, M. Carta, N. B. McKeown, R. Malpass-Evans and J. C. Jansen, *Polymer*, 2019, **11**, 46.
- 27 C. G. Bezzu, M. Carta, M. C. Ferrari, J. C. Jansen, M. Monteleone, E. Esposito, A. Fuoco, K. Hart, T. P. Liyana-Arachchi, C. M. Colina and N. B. McKeown, *J. Mater. Chem. A*, 2018, 6, 10507–10514.
- 28 N. Alaslai, B. Ghanem, F. Alghunaimi, E. Litwiller and I. Pinnau, J. Membr. Sci., 2016, 505, 100–107.
- 29 F. Alghunaimi, B. Ghanem, N. Alaslai, M. Mukaddam and I. Pinnau, *J. Membr. Sci.*, 2016, **520**, 240–246.
- 30 Q. Song, S. Cao, R. H. Pritchard, H. Qiblawey, E. M. Terentjev, A. K. Cheetham and E. Sivaniah, *J. Mater. Chem. A*, 2015, **4**, 270–279.
- N. Alaslai, B. Ghanem, F. Alghunaimi and I. Pinnau, *Polymer*, 2016, **91**, 128–135.
- 32 R. Swaidan, X. Ma, E. Litwiller and I. Pinnau, J. Membr. Sci., 2013, 447, 387–394.
- 33 N. Tien-Binh, D. Rodrigue and S. Kaliaguine, J. Membr. Sci., 2018, 548, 429–438.
- 34 Y. J. Cho and H. B. Park, *Macromol. Rapid Commun.*, 2011, **32**, 579–586.
- 35 N. Alaslai, X. Ma, B. Ghanem, Y. Wang, F. Alghunaimi and I. Pinnau, *Macromol. Rapid Commun.*, 2017, **38**, 1700303.
- 36 F. Alghunaimi, B. Ghanem, N. Alaslai, R. Swaidan, E. Litwiller and I. Pinnau, *J. Membr. Sci.*, 2015, **490**, 321–327.
- 37 W. F. Yong and T. S. Chung, *Polymer*, 2015, **59**, 290–297.
- 38 F. Y. Li, Y. Xiao, T. S. Chung and S. Kawi, *Macromolecules*, 2012, 45, 1427–1437.
- 39 L. Hao, P. Li and T. S. Chung, J. Membr. Sci., 2014, 453, 614–623.
- 40 W. F. Yong, F. Y. Li, T. S. Chung and Y. W. Tong, J. Membr. Sci., 2014, 462, 119–130.
- 41 Z. Wang, Q. Shen, J. Liang, Y. Zhang and J. Jin, Sep. Purif. Technol., 233, 116008.
- 42 C. H. Lau, K. Konstas, C. M. Doherty, S. J. D. Smith, R. Hou, H. Wang, M. Carta, H.

Yoon, J. Park, B. D. Freeman, R. Malpass-Evans, E. Lasseuguette, M. C. Ferrari, N. B. McKeown and M. R. Hill, *Nanoscale*, 2020, **12**, 17405–17410.

- 43 Y. Lou, P. Hao and G. Lipscomb, J. Membr. Sci., 2014, 455, 247–253.
- 44 K. Ghosal, R. T. Chern, B. D. Freeman, W. H. Daly and I. I. Negulescu, *Macromolecules*, 1996, **29**, 4360–4369.
- 45 G. Genduso, B. Ghanem and I. Pinnau, *Membranes*, 2019, **9**, 10.