CeO₂ Sprinkled Graphitic Novel Packed Bed Anode-Based Single-Chamber MFC for

Treatment of High Organic-Loaded Industrial Effluent in Upflow Continuous Mode

Komal Pandey^a, Priyanka Gupta^b, Nishith Verma^{a,b*}, Shiv Singh^{c,d*}

^aCenter for Environmental Science and Engineering, Indian Institute of Technology Kanpur,

Kanpur 208016, India

^bDepartment of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016,

India

°Industrial waste utilization, nano and biomaterial division, CSIR- Advanced Materials and

Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Bhopal, Madhya Pradesh-

462026, India

^dAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India

*Corresponding authors

Prof. Nishith Verma; email id: vermanishith@gmail.com

Dr. Shiv Singh: email id: sshiv.singh@ampri.res.in; sshiviitk@gmail.com

Conical SCMFC front side view

Conical SCMFC back side view

Teflon case which consists anode chamber

Top view of anode chamber with SS

SS basket for holding CeO₂-CNF/ACB

Connector for P-CeO₂-CNF/ACF air cathode

- Connector with gasket for holding Pump for water circulation P-CeO₂-CNF/ACF air cathode along with Teflon lid

Fig. S1. Photograph of real set-up and components of conical SCMFC.

Fig. S2. Flow chart for the synthesis of CeO₂-CNF/ACF and P-CeO₂-CNF/ACF air cathode.

Fig. S3. Flow chart for the synthesis of CeO₂-CNF/ACB.

Parameters	Quantity
pH	9.60
TOC (Total Organic Carbon, mg/L)	15140
TC (Total Carbon, mg/L)	15660
IC (Inorganic carbon, mg/L)	5177
TN (Total Nitrogen, mg/L)	5071
Electric Conductivity (EC, mS/cm)	5.70
COD (mg/L)	20700
Colour	Dark brown
CFU/mL	50.00
Na content (mg/L)	1500.00
Phosphate (mg/L)	0.63
Fluoride (mg/L)	5.32
Cadmium (mg/L)	0.64
Copper (mg/L)	0.16
Lead (mg/L)	0.42
Zinc (mg/L)	3.46

Table S1. Thermal power plant effluent water quality parameters

Table S2. $S_{\text{BET}},\,V_{\text{T}}$ and PSD of the prepared materials

Sample	S_{BET} (m ² /g)	V_{T} (cc/g)	V _{micro} (%)	V _{meso-macro} (%)
ACF	1050	0.67	82.91	17.09
CeO ₂ -CNF/ACF	545	0.33	83.13	16.87
CeO ₂ -PhB	0	0.00	0.00	0.00
CeO ₂ -CNF/ACB	371	0.25	72.02	27.98

Fig. S4. (a) Digital image of the top view of biofilm in the anode chamber, (b-d) SEM images of biofilm grown in different regions over the packed beads.

Fig. S5. SAED pattern of (a) CeO_2 -CNF grown on ACB (anode) and (b) CeO_2 -CNF grown on ACF (cathode) along with the corresponding (h k l) values determined from d-spacing.

Fig. S6. The cyclic voltammogram for CeO₂-CNF/ACF at different scan rates, and the plot (inset) for cathodic peak current vs. square root of scan rate (Randles-Sevcik equation).

Fig. S7. ORR polarization curves for ACF, CeO_2 -ACF, CeO_2 -CNF/ACF and Pt/C (5 wt% Pt on activated carbon) in the oxygen saturated 1M KOH at RDE spped of 1000 rpm and scan rate of 10 mV/s.

Fig. S8 Generated voltages and percentage COD reductions using ACB (viz. substrate without CeO_2) as the packed bed anode and CeO_2 -CNF/ACF as the cathode at 51 min of HRT.

S. No.	Type of MFC	Type of effluent	COD (mg/L)	Chamber volume (mL)	Anode // Cathode	External resistance	Flow rate (mL/min)	HRT (h)	% COD reduction	Voltag e (mV)	Power density (mW/m ²)	Ref
1	SCMFC	Refinery wastewater	4500 - 5000	500	Stainless steel mesh 300 // Carbon cloth	100		15	44	785	113	19
2	DCMFC	Synthetic swine wastewater containing antibiotics	3000	350	Cylindrical graphite felt // carbon- fiber brush	1000		24	90.9- 93.5	630 - 720		20
3	Three- chamber MFC	Synthetic wastewater	705	anode (1100), cathode (1600), and a clarifier (900)	Carbon felt // iron(II) phthalocyani ne (FePc)- carbon felt	1000	0.83	72	87	547	9.3	21
4	SCMFC	Meat wastewater samples	1357.6± 78.6	930	Carbon brush // Plain carbon cloth	27		77, 25 and 15	28.2, 38.6, 69.0	520	3000 mW/m ³	22
5	DCMFC	Artificial municipal wastewater	300 ± 15	350	Cylinder- shaped graphite felt // carbon- fiber brush	1000	0.35, 0.47, 0.59 and 0.70	16.56, 12.48, 9.84 and 8.4	92.4 – 94.4	599	253.84	23

Table S3: Evaluation of the performance of the present study with literature

6	DCMFC	Synthetic wastewater	1500	296	Graphite rods covered with carbon cloth	100	0.05	0.41	55-60	600	188	24
7	DCMFC	Chocolaterie wastewater	$\begin{array}{c} 3800 \pm \\ 150 \end{array}$	Cathode (600) and (500)	Carbon veil		0.2375 - 0.833	15	70	540	98	25
8	DCMFC	Synthetic wastewater	6500	Anode (10.66 L) and cathode (9.96 L).	Plain porous carbon paper	100		22.78 24.57	88.53	816.8	62.94 mW/m ³	26
9	DCMFC	Synthetic wastewater	30000	800	Graphite plate	1000		6.7		440	283	27
10	DCMFC	Brewery wastewater	3197± 979	Anode (10 L) and cathode (30 L)	Carbon fiber cloth	10000	1, 2 and 3	313	94.6 ± 1.0		1.61	28
11	SCMFC	Thermal power plant	~21000	51	CeO2- CNF/ACB // CeO2- CNF/ACF	100	1, 3 and 5	0.85	76	341	424 mW/m ³	This study