Supplementary information

Solution-processable nickel-chromium ternary oxide as an efficient hole transport layer for inverted planar perovskite solar cells

Yichu Zheng,^{‡a} Bing Ge,^{‡b} Li Rong Zheng,^c Yu Hou,^{*b} Shuang Yang^{*b} and Hua Gui Yang^b

^a School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, 200444, P. R. China

^b Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China

^c Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China

‡ Y. Zheng and B. Ge contributed equally to this work.

* Corresponding author: E-mail: yhou@ecust.edu.cn, syang@ecust.edu.cn

Fig. S1. Top-view SEM image of as-deposited NiO_x film. The film is not as compact as $NiCrO_3$ film shown in Fig. 1a.

Fig. S2 Transmittance spectra of NiO_x and $NiCrO_3$ films coated on the FTO substrates. Both films have similar transparency which is highly transparent in the visible range from 300 to 850 nm.

Fig. S3 Top-view SEM images of MAPbI₃ perovskite films deposited on (a) NiO_x and (b) $NiCrO_3$ films. A similar morphology of perovskites was observed for both samples.

Fig. S4 UV-vis absorption spectra of MAPbI₃ perovskite films coated on NiO_x and NiCrO₃ films. Both perovskite films can harvest a wide range of UV and visible light up to 780 nm.

Fig. S5 J-V characteristics of CrO_x HTL based PSC and corresponding photovoltaic parameters. The device was measured under AM 1.5G illumination with a scan rate of 0.15 V s⁻¹.

Fig. S6 Stability metrics of unencapsulated MAPbI₃ PSCs based on NiO_x and NiCrO₃ HTLs under different environments: (a) ambient air with ~20 \pm 5% relative humidity at 25 °C, (b) 85 °C in nitrogen atmosphere, and (c) AM 1.5G irradiation of ~100 mW cm⁻².

Fig. S7 V_{OC} values of the PSCs based on NiO_x and NiCrO₃ HTLs as function of light intensity. The correlation between V_{OC} and light intensity (I) is described as $dV_{OC}/dlnI = nk_BT/q$, where n, k_B , T, and q are the ideality factor, Boltzmann constant, room temperature, and elementary charge, respectively.

norgane miles.					
Device	V _{OC}	J_{SC}	FF	PCE	Ref
	[V]	$[mA cm^{-2}]$	[%]	[%]	
NiCrO ₃	1.104	23.07	78.30	19.93	This Work
NiCo ₂ O ₄	1.063	23.02	78.60	19.24	Adv. Funct. Mater. 2019, 29, 1904684
LiCoO ₂	1.060	22.50	80.00	19.05	J. Mater. Chem. A 2018, 6, 13751-13760
CuCrO ₂	1.070	21.94	81.00	19.00	Adv. Energy Mater. 2018, 8, 1702762
CuGaO ₂	1.110	21.66	77.00	18.51	Adv. Mater. 2017, 29, 1604984
NiCo ₂ O ₄	1.070	21.86	78.00	18.23	Adv. Energy Mater. 2018, 8, 1702722
CuFeO ₂	1.010	23.60	65.00	15.60	ACS Appl. Mater. Interfaces 2019 , 11, 45142-45149

 Table S1 Summary of photovoltaic performances of perovskite solar cells based on ternary inorganic HTLs.