Supporting information for

Atomic Layer Deposition-Triggered Hierarchical Core/Shell Stable Bifunctional Electrocatalysts for Overall Water Splitting

T. Kavinkumar^a, Selvaraj Seenivasan^a, Hyeonjung Jung^b, Jeong Woo Han^b* and Do-Heyoung Kim^a*

^aSchool of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea.

^bDepartment of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.

*Corresponding author's email: kdhh@chonnam.ac.kr; jwhan@postech.ac.kr

Tel. (office): +82-62-530-1894

Experimental section

The preparation of NiCo₂O₄, NiCo₂O₄/MoO₂, NiCo₂O₄@ALD-NiO and NiCo₂O₄/MoO₂@ALD-NiO heteronanostructures has been described in our previous report.¹

Electrochemical measurements

A saturated calomel electrode (SCE), Pt foil, and as-fabricated samples on the nickel foam (NF) served as the reference, counter, and working electrodes, respectively in an electrochemical workstation (WonATech WBCS30000). Five milligrams of Pt/C (or RuO₂) and 10 μ L of Nafion were dispersed in 1 mL of a water/alcohol mixture solution (3:1) using ultrasonication to prepare

an ink. Finally, 50 μ L of the catalyst ink was coated on the NF followed by drying at 60 °C. Thereafter, LSV measurements were performed at 2 mV s⁻¹ in a 1 M KOH solution for the OER and HER. EIS measurements were conducted on a Parstat 3000 workstation (0.01 Hz to 100 kHz at an amplitude of 10 mV). A gas chromatography system (074-594-P1E Micro GC Fusion, INFICON) was used to estimate the amounts of the gaseous products. All potentials were calibrated to the RHE using Eq 1. η was obtained using Eq 2, and the Tafel slope was obtained using Eq 3:

$$E_{\rm RHE} = E_{\rm SCE} + 0.059 \rm{pH} + 0.197$$
(1)

$$\eta = E_{\rm RHE} - 1.23 \tag{2}$$

$$\eta = b \log j + a \tag{3}$$

Computational details

All the DFT calculations were carried out using the Vienna Ab initio Simulation Package (VASP) ^{2, 3}. The Perdew–Burke–Ernzerhof exchange–correlation functional and the projector augmented wave pseudopotential were adopted with spin-polarization. During structural optimization, the convergence criterion of the total energy was set to 10^{-4} eV, and the atoms were relaxed until the force acting on each atom was less than 0.03 eV/Å ^{4, 5}. A plane-wave cutoff energy of 400 eV was used in all computations. Brillouin zone sampling was conducted with $6 \times 6 \times 6$, $4 \times 4 \times 1$, and $4 \times 4 \times 1$ Monkhorst-Pack grids for the MoO₂ bulk, MoO₂ slab, and MoO₂@ALD-NiO slab model calculations, respectively ⁶. The (-111) facet is typically studied in monoclinic MoO₂ systems, whereas the (100) facet is the most stable NiO surface ⁷⁻¹⁰. Therefore, the most stable MoO₂ (-111) termination was investigated for the NiCo₂O₄/MOO₂

surface, and four NiO (100) layers were loaded onto it to represent the NiCo₂O₄/MoO₂@ALD-NiO surface (Figure S11). The lattice misfit between MoO₂ and NiO was calculated as follows:

$$f = \left| \frac{l_{MoO_2} - l_{NiO}}{l_{MoO_2}} \right|,$$

where *l* is the length of one side. The two bottom layers of the four MoO_2 layers were fixed in all slab models, and each slab model was separated from its neighbors by a sufficiently thick vacuum layer spacing. The Gibbs free energies of the alkaline OER and HER were calculated by correcting the DFT energy using the zero-point energy (*ZPE*) and entropy as follows:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S_{,}$$

where E is the DFT-calculated total energy, ZPE is the zero-point energy, T is the environment temperature, and S is the entropy. The vibrational frequencies for the ZPE correction and entropy calculations were calculated by employing the density-functional perturbation theory. The band center was calculated as follows:

$$M_d \text{ or } O_p = \frac{\int\limits_{-\infty}^{E_f} E \cdot \rho(E) dE}{\int\limits_{-\infty}^{E_f} \rho(E) dE},$$

where E_f is the Fermi-level energy, E is the energy relative to the Fermi level, and ρ represents the density of state in corresponding orbital.

Characterization

XRD patterns were collected from 10° to 80° using an X-ray diffractometer (PANalytical) employing Cu K α radiation. FE-SEM and TEM were performed using the JEOL JSM-7500F and a Tecnai G2 F20, respectively. The oxidation states of the catalysts were determined using XPS (ESCALAB-MKII (VG Scientific Co.)).

Figure S1. Powder XRD pattern of the $NiCo_2O_4/MoO_2@ALD-NiO$ heteronanostructure. Reproduced with permission.¹

Figure S2. FE-SEM images of (a, b) pristine $NiCo_2O_4$, and the (c, d) $NiCo_2O_4/MoO_2$ core/shell structure at different magnifications. Reproduced with permission.¹

Figure S3. TEM images of NiCo₂O₄@ALD-NiO at different magnifications.

Figure S4. Cyclic voltammograms in the potential range 50–150 mV for (a) $NiCo_2O_4/MoO_2$ and (b) the $NiCo_2O_4/MoO_2@ALD-NiO$ heteronanostructures at different sweep rates. (c) Current density vs. sweep rate of the as-prepared electrocatalysts for measuring C_{dl} .

Figure S5. Nyquist plots corresponding to various catalysts in 1 M KOH.

Figure S6. FE-SEM images of the NiCo₂O₄/MoO₂@ALD-NiO heteronanostructure (a, b) before, (c, d) after the100 h OER, and (e, f) after the 100 h HER.

Figure S7. XPS spectra of the NiCo₂O₄/MoO₂@ALD-NiO heteronanostructure before and after 100 h of the OER/HER.

Figure S8. TEM, HR-TEM, and elemental mapping results for the $NiCo_2O_4/MoO_2@ALD-NiO$ heteronanostructure: (a–c) before, (d–f) after the OER, and (g–i) after the HER.

Figure S9. Nyquist plots corresponding to various catalysts in 1 M KOH.

Figure S10. Partial density of states and band centers of the (a) active-metal 3d orbital and (b) active-oxygen 2p orbital. The Fermi level is set to zero.

Figure S11. (a) Side and (b) top views of MoO₂ and MoO₂@ALD-NiO slab models, respectively. The solid black line represents one unit cell area.

Table S1. Comparison of the OER performance of the $NiCo_2O_4/MoO_2@ALD-NiO$ heteronanostructure with that of previously reported electrocatalysts.

Catalyst	Electrolyte	Overpotential at 100 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	Ref.
		()	()	
NiCo ₂ O ₄ @CoMoO ₄	1 M KOH	~490	-	11
VCNB/NF	1 M KOH	370	-	12
NiCo ₂ S ₂ NW	1 M KOH	370	40	13
Ni ₂ P@NF-6	1 M KOH	590	297	14
Ni@Co-Ni-P	1 М КОН	380	65	15
Ultrathin Co ₃ O ₄ nanosheets	1 M KOH	535	49.1	16
NiCoP/C	1 М КОН	430	96	17
Co ₃ O ₄ /NiCo ₂ O ₄	1 М КОН	495	88	18
NiFe-LDH	1 M NaOH	450	-	19
Co ₃ O ₄ NWs	1 М КОН	468	95.0	20
NiCo ₂ O ₄ /MoO ₂ @ALD-NiO heteronanostructure	1 M KOH	372.3	57.0	Present work

Table S2. Comparison of the HER performance of the $NiCo_2O_4/MoO_2@ALD-NiO$ heteronanostructure with that of previously reported electrocatalysts.

	Electrolyte	Overpotential at 10	Tafel slope	Df
Catalyst		mA cm ⁻² (mV)	(mV dec ⁻¹)	Ref.
NiCo ₂ O ₄ @CoMoO ₄	1 M KOH	121	77.0	11
Ni-Co-P	1 M KOH	107	46.0	21
NiFe-LDH/NiCo ₂ O ₄	1 M KOH	192	59.0	22
Ni(OH) ₂ @CuS	1 M KOH	95	42.0	23
H-Fe-CoMoS	1 M KOH	138	98.0	24
NiCo ₂ O ₄ @Ni _{0.796} CoLDH	1 M KOH	115	56.4	25
Ar-NiCo ₂ O ₄ /S	1 M KOH	137	121.4	26
FeOOH/NiCo ₂ O ₄	1 M KOH	146	41.3	27
NiCo ₂ O ₄ /NiCoP	1 M KOH	198	91.0	28
NiCo ₂ O ₄ LDH nanoflakes	1 M KOH	140	124.2	29
NiCo ₂ O ₄ @NiMoO ₄	1 M KOH	300	94.0	30
NiCo ₂ O ₄ /MoO ₂ @ALD-NiO	1 M KOH	57 1	59.0	Present
heteronanostructure		5/.1	20.0	work

Table S3. Comparison of the water splitting performance of the NiCo ₂ O ₄ /MoO ₂ @ALD-NiO
heteronanostructure with that of previously reported electrocatalysts.

Catalyst	Electrolyte	Voltage (V)	Ref.
NiFe/NiCo ₂ O ₄	1 M KOH	1.67 V @ 10 mA cm ⁻²	31
Co-Fe oxyphosphide	1 M KOH	1.69 V @ 10 mA cm ⁻²	32
NiFe HNSs	1 M KOH	1.67 V @ 10 mA cm ⁻²	33
NiS-Ni ₂ P ₂ S ₆	1 M KOH	1.64 V @ 10 mA cm ⁻²	34
Ar-NiCo ₂ O ₄ /S	1 M KOH	1.63 V @ 10 mA cm ⁻²	26
NiCo ₂ O ₄ /NiCoP	1 M KOH	1.66 V @ 10 mA cm ⁻²	28
NiCo ₂ O ₄ //Ni _{0.33} Co _{0.67} S ₂	1 M KOH	1.73 V @ 10 mA cm ⁻²	35
NWs			
Ni/NiO	1 M KOH	1.71 V @ 10 mA cm ⁻²	36
CoxPO ₄ /CoP	1 M KOH	1.91 V @ 10 mA cm ⁻²	37
Co ₉ S ₈ -CoSe ₂	1 M KOH	1.66 V @ 10 mA cm ⁻²	38
MoP@Ni ₃ P/NF	1 M KOH	1.67 V @ 10 mA cm ⁻²	39
NiCo ₂ O ₄ /MoO ₂ @ALD-NiO	1 M KOH	1 62 V @ 10 m 4 cm ⁻²	This
heteronanostructure			work

References

- T. Kavinkumar, S. Seenivasan, H. H. Lee, H. Jung, J. W. Han and D.-H. Kim, *Nano Energy*, 2021, 81, 105667.
- 2. G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47, 558-561.
- 3. G. Kresse and J. Furthmüller, Phys. Rev. B, 1996, 54, 11169-11186.
- 4. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
- 5. P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953-17979.
- 6. H. J. Monkhorst and J. D. Pack, *Phys. Rev. B*, 1976, **13**, 5188-5192.
- K. Chen, X.-M. Zhang, X.-F. Yang, M.-G. Jiao, Z. Zhou, M.-H. Zhang, D.-H. Wang and X.-H. Bu, *Appl. Catal. B.*, 2018, 238, 263-273.
- H. H. Zhao, Z. Li, X. P. Dai, M. L. Cui, F. Nie, X. Zhang, Z. T. Ren, Z. H. Yang, Y. H. Gan, X. L. Yin, Y. Wang and W. Y. Song, *J. Mater. Chem. A*, 2020, 8, 6732-6739.
- 9. P. W. Tasker and D. M. Duffy, Surface Science, 1984, 137, 91-102.
- 10. B. C. Wang, J. Nisar and R. Ahuja, ACS Appl. Mater. Interfaces, 2012, 4, 5691-5697.
- Y. Q. Gong, Z. Yang, Y. Lin, J. L. Wang, H. L. Pan and Z. F. Xu, J. Mater. Chem. A, 2018, 6, 16950-16958.
- H. Han, Y. R. Hong, J. Woo, S. Mhin, K. M. Kim, J. Kwon, H. Choi, Y. C. Chung and T. Song, *Adv. Energy Mater.*, 2019, 9, 1803799.
- 13. A. Sivanantham, P. Ganesan and S. Shanmugam, Adv. Funct. Mater., 2016, 26, 4661-4672.
- I. J. L. Zheng, W. Zhou, T. Liu, S. J. Liu, C. B. Wang and L. Guo, *Nanoscale*, 2017, 9, 4409-4418.
- 15. W. Li, X. F. Gao, X. G. Wang, D. H. Xiong, P. P. Huang, W. G. Song, X. Q. Bao and L. F. Liu, *J. Power Sources*, 2016, **330**, 156-166.

- 16. Z. Cai, Y. M. Bi, E. Y. Hu, W. Liu, N. Dwarica, Y. Tian, X. L. Li, Y. Kuang, Y. P. Li, X. Q. Yang, H. L. Wang and X. M. Sun, *Adv. Energy Mater.*, 2018, 8, 1701694.
- 17. P. He, X. Y. Yu and X. W. Lou, Angew. Chem. Int. Edit., 2017, 56, 3897-3900.
- 18. H. Hu, B. Y. Guan, B. Y. Xia and X. W. Lou, J. Am. Chem. Soc., 2015, 137, 5590-5595.
- J. S. Luo, J. H. Im, M. T. Mayer, M. Schreier, M. K. Nazeeruddin, N. G. Park, S. D. Tilley, H. J. Fan and M. Gratzel, *Science*, 2014, 345, 1593-1596.
- 20. C. M. Zhang, F. Q. Zheng, Z. W. Zhang, D. Xiang, C. F. Cheng, Z. H. Zhuang, P. Li, X. K. Li and W. Chen, J. Mater. Chem. A, 2019, 7, 9059-9067.
- 21. E. L. Hu, Y. F. Feng, J. W. Nai, D. Zhao, Y. Hu and X. W. Lou, *Energ. Environ. Sci.*, 2018, 11, 872-880.
- 22. Z. Q. Wang, S. Zeng, W. H. Liu, X. W. Wang, Q. W. Li, Z. G. Zhao and F. X. Geng, ACS Appl. Mater. Interfaces, 2017, 9, 1488-1495.
- S. Q. Liu, H. R. Wen, Ying-Guo, Y. W. Zhu, X. Z. Fu, R. Sun and C. P. Wong, *Nano Energy*, 2018, 44, 7-14.
- 24. Y. N. Guo, X. Zhou, J. Tang, S. Tanaka, Y. V. Kaneti, J. Na, B. Jiang, Y. Yamauchi, Y. S. Bando and Y. Sugahara, *Nano Energy*, 2020, **75**, 104913.
- M. Li, L. Tao, X. Xiao, X. Jiang, M. Wang and Y. Shen, ACS Sustain. Chem. Eng., 2019, 7, 4784-4791.
- 26. J. H. Lin, Y. T. Yan, T. X. Xu, C. Q. Qu, J. Li, J. Cao, J. C. Feng and J. L. Qi, J. Colloid. Interf. Sci., 2020, 560, 34-39.
- 27. X. Cao, Y. Sang, L. Wang, G. Ding, R. Yu and B. Geng, Nanoscale, 2020, 12, 19404-19412.
- 28. W. Jin, J. P. Chen, H. B. Wu, N. Zang, Q. W. Li, W. Q. Cai and Z. X. Wu, Catal. Sci. Technol., 2020, 10, 5559-5565.

- L. B. Ma, Y. Hu, R. P. Chen, G. Y. Zhu, T. Chen, H. L. Lv, Y. R. Wang, J. Liang, H. X. Liu,
 C. Z. Yan, H. F. Zhu, Z. X. Tie, Z. Jin and J. Liu, *Nano Energy*, 2016, 24, 139-147.
- 30. D. Cui, R. D. Zhao, J. Q. Dai, J. Xiang and F. F. Wu, Dalton T., 2020, 49, 9668-9679.
- 31. C. L. Xiao, Y. B. Li, X. Y. Lu and C. Zhao, Adv. Funct. Mater., 2016, 26, 3515-3523.
- 32. P. Zhang, X. F. Lu, J. W. Nai, S. Q. Zang and X. W. Lou, Adv. Sci., 2019, 6, 1900576.
- X. H. Sun, Q. Shao, Y. C. Pi, J. Guo and X. Q. Huang, J. Mater. Chem. A, 2017, 5, 7769-7775.
- 34. X. Y. Zhang, S. Zhang, J. Li and E. K. Wang, J. Mater. Chem. A, 2017, 5, 22131-22136.
- Z. Peng, D. S. Jia, A. M. Al-Enizi, A. A. Elzatahry and G. F. Zheng, *Adv. Energy Mater.*, 2015, 5, 1402031.
- 36. H. Sun, Z. Ma, Y. Qiu, H. Liu and G.-g. Gao, *Small*, 2018, 14, 1800294.
- 37. Y. Yang, H. L. Fei, G. D. Ruan and J. M. Tour, Adv. Mater., 2015, 27, 3175-3180.
- S. Chakrabartty, S. Karmakar and C. R. Raj, ACS Appl. Nano Mater., 2020, 3, 11326-11334.
- 39. F. M. Wang, J. W. Chen, X. P. Qi, H. Yang, H. H. Jiang, Y. Q. Deng and T. X. Liang, *Appl. Surf. Sci.*, 2019, **481**, 1403-1411.