Supplementary Information

Highly dispersed CoP on three-dimensional ordered mesoporous FeP for efficient electrocatalytic hydrogen production

Yuchen Wu¹², Yongjia Wang¹, Zhiwei Wang¹² and Xiuting Li^{*1}

¹Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China. Email: xiuting.li@szu.edu.cn.

²Key Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.

*Correspondence and requests for materials should be addressed to X.L. (email: xiuting.li@szu.edu.cn).

Table of Contents

Preparation and yield of the CoP@3DOM-FeP and the Bulk-Co(0.1)FeP......4

Fig. S1 A typical SEM image of the Co-MOF embedded 3-dimensional ordered F	' S
template	3
Fig. S2 A picture of the ceramic combustion boat and the Co(0.1)P@3DOM-FeP	
samples	.4
Fig. S3 Calibration curves of SCE vs RHE in $0.5M H_2SO_4$, 1M PBS and 1M KOI	Н
electrolyte solution	6
Fig. S4 HRTEM images of FeP crystalline regions.	.7
Fig. S5 BET isotherm and pore distribution of Bulk-Co(0.1)P@FeP	8
Fig. S6 Cyclic voltammograms of a) Co(0.1)P@3DOM-FeP and b) Bulk-	
Co(0.1)FeP at the scan rates of 5~100 mV s ⁻¹	.9
Fig. S7 XPS survey spectra of Co(0.1)P@3DOM-FeP	10
Fig. S8 A typical SEM image of the Co(0.2)P@3DOM-FeP.	11
Fig. S9 Chronoamperometric i-t test of the Co(0.1)P@3DOM-FeP catalyst in	
alkaline and acidic media.	12

Table	S1	HER	performance	comparison	of	several	up-to-date	cobalt	based
ele	ctro	catalys	ts		•••••				13

Fig. S1 A typical SEM image of the Co-MOF embedded 3-dimensional ordered PS template.

Preparation and yield of the CoP@3DOM-FeP and the Bulk-Co(0.1)FeP

For synthesizing the Co(0.1)P@3DOM-FeP, 2.0 g ferrous (II) acetate (Fe(II)Ac₂, 222.1 g mol⁻¹) and 0.1 g ZIF-67 (71.84 g mol⁻¹) were used. Assuming all the cobalt and iron formed ideal CoP and FeP, the theoretical mass of the final product should be 1.596 g. While the weight of the synthesised product in a single batch is around 1.1~1.3 g. Thus, the yield percentage is around 69%~82%. The main reasons for the loss include the inevitable residues in the combustion boat (20mm×20mm×40mm, Fig. S2), the transfer loss in each step of the synthesis and the influence of the gas flow in the annealing process. Clearly these types of loss can be greatly reduced if

larger batch are considered in the future.

For synthesizing the Bulk-Co(0.1)FeP, 2.0 g ferrous (II) acetate (Fe(II)Ac₂) and 1.8 g (1 mM) cobalt nitrate hexahydrate (Co(NO₃)₂·6H₂O) were dissolved in the mixed solution of 4 mL ethylene glycol (EG) and 0.1 mL acetate acid. The solution was

then kept vigorous stirring for 30 mins in a sealed vial to avoid oxidation. Next, without PS template added, the sample was dried in an oven for several hours until the ethanol evaporated, and the Fe-Co mixed metal salt was recrystallized. The mixed salt was washed and dried with ethanol for several times and then grinded into powders. The powders was calcinated in furnace tube and treated with the phosphide CVD with the same protocol for synthesizing the Co(0.1)P@3DOM-FeP. The yield of the synthesised Bulk-Co(0.1)FeP is 1.39 g, while the theoretical value (1.596 g) is the same with Co(0.1)P@3DOM-FeP. Thus, the yield rate for Bulk-Co(0.1)FeP is 87.0%."

Fig. S3 Calibration curves of SCE vs RHE in $0.5M H_2SO_4$, 1M PBS and 1M KOH electrolyte solution.

Fig. S4 HRTEM images of FeP crystalline regions.

Fig. S5 BET isotherm and pore distribution of Bulk-Co(0.1)P@FeP.

Fig. S6 Cyclic voltammograms of a) Co(0.1)P@3DOM-FeP and b) Bulk-Co(0.1)FeP at the scan rates of 5~100 mV s⁻¹.

Fig. S7 XPS survey spectra of Co(0.1)P@3DOM-FeP.

Fig. S8 A typical SEM image of the Co(0.2)P@3DOM-FeP.

Fig. S9 Chronoamperometric i-t test of the Co(0.1)P@3DOM-FeP catalyst with constant overpotentials of 107 mV and 135 mV applied in alkaline and acidic media respectively.

		Overpotential	Tafel Slop	Deferment	
Electrocatalyst	Electrolyte	mV (@10mA cm ⁻²)	mV dec ⁻¹	Keterences	
Pt/C	Universal PH	53.7~64.5	36.2~46.5	This work	
CoP@3DOM-FeP	Universal PH	67.2~76.5	66.3~77.5	This work	
N-CoP/ CC	Universal PH	25~74	49~69	1	
Cu-CoP NRAs/CC	Universal PH	44~137	86~144	2	
W-CoP NAs/CC	Universal PH	89~102	58~87	3	
V-CPNA/CC	Universal PH	87~98	65.4~83.7	4	
$CoS_{1.097}/MoS_2$	Universal PH	228~341	59~85	5	
CoP NFs	Universal PH	122~136	54.8~56.2	6	
Mn-Co-P/Ti	Universal PH	49~86	55~82	7	
Ni _{0.89} Co _{0.11} Se ₂ MNSN/ NF	Universal PH	52~85	39~78	8	
CoP/Co-MOF	Universal PH	27~49	43~63	9	
CoP@3D-NPC	Universal PH	127~333	58~71	10	
CoP@NG	Universal PH	158~182	59.6~63.8	11	
CoP/NF	Universal PH	41.1~83.9	55~65.3	12	
CoP/Mo ₂ C-NC	Universal PH	68~81.8	49~68	13	
CoP/CoMoP	Alkaline	34	33	14	
CoP@NC-350	Alkaline	75	55	15	
CoPS/N–C	Alkaline	148	78	16	
CoMoCH@NiCoP/NF	Alkaline	45	63	17	
CoP/PNC	Alkaline	165	70	18	
Mo-CoP	Alkaline	118	69	19	
Bi/CoP	Alkaline	122	60.2	20	
NiCoP-8.0	Alkaline	34.3	49.9	21	

Table S1 HER performance comparison of several up-to-date cobaltbased electrocatalysts.

Amorphous CoP/NF	Alkaline	143	63	22
CoFeO@BP	Alkaline	88	51	23
CeO ₂ /Co ₄ N	Alkaline	30	66	24
Mn ₃ O ₄ /CoP PNRs	Alkaline	43	28.9	25
N-CNTs@Co4N@NF	Alkaline	67	46.5	26
O,Mo-CoP/NF-2	Alkaline	59	65.4	27
HP-CoP NA/NF	Alkaline	70	83.2	28
Co _{0.2} -VOOH	Alkaline	130	58.2	29
CoP/SPNF	Alkaline	45	65.9	30
Cu ₃ P–CoP/CC	Acidic	59	58	31
CoP/rGO-400	Acidic	105	50	32
Ni ₂ P–CoP	Acidic	105	64	33
CoP ₂ /CC	Acidic	72	67	34
NiCoP	Acidic	160	70	35
NiCoP/MoxC-15	Acidic	116	57.4	36
Co-MoS ₂ -0.5	Acidic	60	64.72	37
Fe-Co ₂ P/ NCNTs	Acidic	104	68	38
CoP-N-C-400	Acidic	31	42	39
$MoS_2@CoS_2$	Acidic	96	60	40

References

- 1. Men, Y.; Li, P.; Yang, F.; Cheng, G.; Chen, S.; Luo, W., Applied Catalysis B: Environmental 2019, 253, 21-27.
- Wen, L.; Sun, Y.; Zhang, C.; Yu, J.; Li, X.; Lyu, X.; Cai, W.; Li, Y., ACS Applied Energy Materials 2018, 1 (8), 3835-3842.
- Wang, X.; Chen, Y.; Yu, B.; Wang, Z.; Wang, H.; Sun, B.; Li, W.; Yang, D.; Zhang, W., Small 2019, 15 (37), 1902613.
- Wang, X.; Chen, Y.; He, J.; Yu, B.; Wang, B.; Zhang, X.; Li, W.; Ramadoss, M.; Zhang, W.;
 Yang, D., ACS Applied Energy Materials 2020, 3 (1), 1027-1035.
- Sun, J.; Huang, Z.; Huang, T.; Wang, X.; Wang, X.; Yu, P.; Zong, C.; Dai, F.; Sun, D., ACS Applied Energy Materials 2019, 2 (10), 7504-7511.
- 6. Ji, L.; Wang, J.; Teng, X.; Meyer, T. J.; Chen, Z., ACS Catalysis **2020**, 10 (1), 412-419.
- Liu, T.; Ma, X.; Liu, D.; Hao, S.; Du, G.; Ma, Y.; Asiri, A. M.; Sun, X.; Chen, L., ACS Catalysis 2017, 7 (1), 98-102.
- Liu, B.; Zhao, Y.-F.; Peng, H.-Q.; Zhang, Z.-Y.; Sit, C.-K.; Yuen, M.-F.; Zhang, T.-R.; Lee, C.-S.; Zhang, W.-J., *Advanced Materials* 2017, 29 (19), 1606521.
- 9. Liu, T.; Li, P.; Yao, N.; Cheng, G.; Chen, S.; Luo, W.; Yin, Y., Angewandte Chemie International Edition 2019, 58 (14), 4679-4684.
- 10. Yang, S.; Chen, L.; Wei, W.; Lv, X.; Xie, J., Applied Surface Science 2019, 476, 749-756.
- 11. Lu, Y.; Hou, W.; Yang, D.; Chen, Y., *Electrochimica Acta* **2019**, 307, 543-552.
- 12. Liu, J.; Gao, Y.; Tang, X.; Zhan, K.; Zhao, B.; Xia, B. Y.; Yan, Y., *Journal of Materials Chemistry A* **2020**, 8 (37), 19254-19261.
- Luo, X.; Zhou, Q.; Du, S.; Li, J.; Zhang, L.; Lin, K.; Li, H.; Chen, B.; Wu, T.; Chen, D.;
 Chang, M.; Liu, Y., ACS Applied Materials & Interfaces 2018, 10 (49), 42335-42347.
- 14. Huang, X.; Xu, X.; Luan, X.; Cheng, D., *Nano Energy* **2020**, 68, 104332.
- Li, Z.; Sui, J.; Zhang, Q.; Yu, J.; Yu, L.; Dong, L., *International Journal of Hydrogen Energy* 2021, 46 (2), 2095-2102.
- Li, Y.; Niu, S.; Rakov, D.; Wang, Y.; Cabán-Acevedo, M.; Zheng, S.; Song, B.; Xu, P., Nanoscale 2018, 10 (15), 7291-7297.

- Guo, D.; Chen, H.; Tian, H.; Ouyang, S.; Wang, J.; Lv, J., *Chemical Communications* 2020, 56 (37), 4990-4993.
- 18. Peng, Z.; Yu, Y.; Jiang, D.; Wu, Y.; Xia, B. Y.; Dong, Z., *Carbon* **2019**, 144, 464-471.
- 19. Li, L.; Guo, Y.; Wang, X.; Liu, X.; Lu, Y., *Langmuir* **2021**, 37 (19), 5986-5992.
- Guo, L.; Bai, X.; Xue, H.; Sun, J.; Song, T.; Zhang, S.; Qin, L.; Huang, K.; He, F.; Wang, Q., Chemical Communications 2020, 56 (56), 7702-7705.
- 21. Lv, X.; Li, X.; Yang, C.; Ding, X.; Zhang, Y.; Zheng, Y.-Z.; Li, S.; Sun, X.; Tao, X., *Advanced Functional Materials* **2020**, 30 (16), 1910830.
- Beltrán-Suito, R.; Menezes, P. W.; Driess, M., *Journal of Materials Chemistry A* 2019, 7 (26), 15749-15756.
- 23. Li, X.; Xiao, L.; Zhou, L.; Xu, Q.; Weng, J.; Xu, J.; Liu, B., Angewandte Chemie International Edition 2020, 59 (47), 21106-21113.
- 24. Yao, N.; Meng, R.; Wu, F.; Fan, Z.; Cheng, G.; Luo, W., *Applied Catalysis B: Environmental* **2020**, 277, 119282.
- 25. Dong, R.; Zhu, A.; Zeng, W.; Qiao, L.; Lu, L.; Liu, Y.; Tan, P.; Pan, J., *Applied Surface Science* **2021**, 544, 148860.
- Jiao, M.; Wang, Z.; Chen, Z.; Zhang, X.; Mou, K.; Zhang, W.; Liu, L., *ChemElectroChem* 2020, 7 (9), 2065-2072.
- Mu, J.; Xu, J.; Zhou, C.; Wang, Q.; Wang, X.-G.; Liu, Z.-Y.; Zhao, X.-J.; Yang, E.-C., ChemElectroChem 2021, 8 (1), 103-111.
- 28. Wang, H.; Li, Y.; Wang, R.; He, B.; Gong, Y., *Electrochimica Acta* **2018**, 284, 504-512.
- Tao, B. X.; Li, X. L.; Ye, C.; Zhang, Q.; Deng, Y. H.; Han, L.; Li, L. J.; Luo, H. Q.; Li, N. B., *Nanoscale* 2019, 11 (39), 18238-18245.
- Cao, S.; You, N.; Wei, L.; Huang, C.; Fan, X.; Shi, K.; Yang, Z.; Zhang, W., *Inorganic Chemistry* 2020, 59 (12), 8522-8531.
- 31. Du, H.; Zhang, X.; Tan, Q.; Kong, R.; Qu, F., *Chemical Communications* **2017**, 53 (88), 12012-12015.
- 32. Jiao, L.; Zhou, Y.-X.; Jiang, H.-L., *Chemical Science* **2016**, 7 (3), 1690-1695.
- Liang, X.; Zheng, B.; Chen, L.; Zhang, J.; Zhuang, Z.; Chen, B., ACS Applied Materials & Interfaces 2017, 9 (27), 23222-23229.

- Zhou, Y.; Yang, Y.; Wang, R.; Wang, X.; Zhang, X.; Qiang, L.; Wang, W.; Wang, Q.; Hu,
 Z., Journal of Materials Chemistry A 2018, 6 (39), 19038-19046.
- Das, J. K.; Samantara, A. K.; Satyarthy, S.; Rout, C. S.; Behera, J. N., *RSC Advances* 2020, 10 (8), 4650-4656.
- 36. Wang, Y.; Wang, B.; Chu, W.; Kong, Y.; Wu, Q.; Liu, Z., *International Journal of Hydrogen Energy* **2020**.
- 37. Xiong, Q.; Zhang, X.; Wang, H.; Liu, G.; Wang, G.; Zhang, H.; Zhao, H., *Chemical Communications* **2018**, 54 (31), 3859-3862.
- Pan, Y.; Liu, Y.; Liu, Y.; Liu, C., ACS Applied Materials & Interfaces 2016, 8 (22), 13890-13901.
- 39. Zhang, Z.; Hao, J.; Yang, W.; Tang, J., *ChemCatChem* **2015**, 7 (13), 1920-1925.
- 40. He, S.; Du, H.; Wang, K.; Liu, Q.; Sun, J.; Liu, Y.; Du, Z.; Xie, L.; Ai, W.; Huang, W., *Chemical Communications* **2020**, 56 (41), 5548-5551.