Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information for

Synthesis and catalytic application of nanorod-like FER-type zeolite

Weijiong Dai^{a,b}, Valérie Ruaux^b, Xin Deng^a, Wenshu Tai^a, Guangjun Wu^{a*}, Naijia Guan^a, Landong Li^a, Valentin Valtchev^{b*}

^aSchool of Materials Science and Engineering & National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China;

^bNormandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 14050 Caen, France.

*Corresponding Authors

Email: wuguangjun@nankai.edu.cn; valentin.valtchev@ensicaen.fr

This PDF contains:

Figure S1-7; Table S1-3

Figure S1. Variation of the pH value as a function of NH₄F concentration in the synthesis system.

Figure S2. Nitrogen adsorption/desorption isotherms of as-synthesized FER samples.

Figure S3. ¹³C CP MAS NMR spectra of as-synthesized three different FER zeolites.

Figure S4. TG curves of as-synthesized FER zeolite samples: FER-F-0, FER-F-0.1 and FER-F-0.2.

Figure S5. NH_3 -TPD profiles of as-synthesized samples FER-F-0 and FER-F-0.2.

Figure S6. ¹H MAS NMR spectra of the dehydrated FER samples recorded before (black curves) and after (red curves) loading with D₃-acetonitrile.

Figure S7. TGA curves of spent FER-F-0 and FER-F-0.2 catalysts used in the 1-butene skeletal isomerization.

Sample	SiO ₂	AI_2O_3	SDA	Na ₂ O	H ₂ O	$\rm NH_4F$	T (°C)	Phase
FER-F-O	1	0.05	0.6	0.08	20	0	180	FER
FER-F-0.1	1	0.05	0.6	0.08	20	0.1	180	FER
FER-F-0.2	1	0.05	0.6	0.08	20	0.2	180	FER
FER-F-0.4	1	0.05	0.6	0.08	20	0.4	180	FER
FER-F-0.8	1	0.05	0.6	0.08	20	0.8	180	FER+ MTN
FER-F-1.2	1	0.05	0.6	0.08	20	1.2	180	FER+ MTN

Table S1. Molar composition of the initial mixtures and crystallization conditions of synthesized FERtype zeolites.

Table S2. Textural properties of as-synthesized FER samples.

S_{BET}^{a}	$S_{ext}^{\ b}$	V _{micro} ^b	V_{total}^{c}	Si/Al ^d
(m²/g)	(m²/g)	(cm ³ /g)	(cm ³ /g)	
383	56	0.13	0.19	8.7
397	67	0.13	0.22	9.3
409	86	0.13	0.30	9.5
	S _{BET} ^a (m ² /g) 383 397 409	S _{BET} ^a S _{ext} ^b (m²/g) (m²/g) 383 56 397 67 409 86	S _{BET} ^a S _{ext} ^b V _{micro} ^b (m²/g) (m²/g) (cm³/g) 383 56 0.13 397 67 0.13 409 86 0.13	S _{BET} ^a S _{ext} ^b V _{micro} ^b V _{total} ^c (m ² /g) (m ² /g) (cm ³ /g) (cm ³ /g) 383 56 0.13 0.19 397 67 0.13 0.22 409 86 0.13 0.30

^a determined by the multi-point BET method.

^b calculated by the t-plot method.

^c the volume adsorbed at $P/P^0 = 0.97$.

^d determined by the ICP.

Table S3. Coke amount, average coke accumulation rate (R_{coke}) during the the 1-butene skeletal isomerization over FER zeolite catalysts under study, determined for TOS = 1440 min.

samples	Coke(wt%)	R _{coke} (mg/h)	
FER-F-0	10.0	0.463	
FER-F-0.2	7.9	0.357	