Electronic Supplementary Information

In-Situ Embedding of Cobaltous Sulfide Quantum Dots among Transition Metal Layered Double Hydroxide for High Performance All-Solid-State Asymmetric Supercapacitors

Zhiqiang Liua, 1, Yanling Qiua, 1, Aitang Zhanga, Wenrong Yangb, Colin J. Barrowb, Joselito M. Razalc, Jingquan Liua*

aCollege of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao, 266071, China.

bSchool of Life and Environmental Sciences, Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia.

cInstitute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia.

*Corresponding authors.

Tel: +86 532 83780128.

E-mails: jliu@qdu.edu.cn (Jingquan Liu)

1Zhiqiang Liu and Yanling Qiu contributed equally to this work.
Figure S1. SEM micrographs of (a-c) Ni$_1$Mn$_3$Co-LDH/NF at different magnifications, (d-i) EDS elemental mapping images of Ni$_1$Mn$_3$Co-LDH/NF.

Figure S2. SEM micrographs of (a-c) Ni$_2$Mn$_2$Co-LDH/NF at different magnifications, (d-i) EDS elemental mapping images of Ni$_2$Mn$_2$Co-LDH/NF.
Figure S3. CV curves of Ni$_{1-x}$Mn$_4$Co-LDH composited with various Ni/Co ratios at
50 mV s\(^{-1}\).

Figure S4. XRD patterns of the Co-MOF and nickel foam.

Figure S5. (a) N\(_2\) adsorption-desorption isotherms and (b) pore size distribution patterns of Ni\(_3\)Mn\(_1\)Co-LDH/NF and Ni\(_3\)Mn\(_1\)Co@Co\(_9\)S\(_8\)-QDs/NF.
Figure S6. CV curves of the (a) Co-MOF/NF and (b) Ni$_1$Mn$_3$Co-LDH/NF and (c) Ni$_2$Mn$_2$Co-LDH/NF and (d) Ni$_3$Mn$_1$Co-LDH/NF electrode at different scan rates ranging from 5 to 100 mV s$^{-1}$.
Figure S7. GCD curves of the (a) Co-MOF/NF and (b) Ni$_1$Mn$_3$Co-LDH/NF and (c) Ni$_2$Mn$_2$Co-LDH/NF and (d) Ni$_3$Mn$_1$Co-LDH/NF electrode at different current densities ranging from 1 to 20 A g$^{-1}$.
Figure S8. A comparison of the specific capacitances of our Ni$_3$Mn$_1$Co@Co$_9$S$_8$-QDs/NF electrode with those previously reported cobalt sulfide electrode materials.
Figure S9. (a) XRD patterns of the Fe$_2$O$_3$@C/CC. The narrow spectra of (b) Fe 2p, (c) O 1s and (d) C 1s for Fe$_2$O$_3$@C/CC.

Figure S10. (a) CV curves of the Fe$_2$O$_3$@C/CC electrode at different scan rates ranging from 5 to 100 mV s$^{-1}$ (b) GCD curves of the Fe$_2$O$_3$@C/CC electrode at different current densities ranging from 1 to 20 A g$^{-1}$.
Figure S11 (a, b) TEM images of Co$_9$S$_8$-QDs synthesized from different concentrations of TAA (c-h) CV and GCD curves of Co$_9$S$_8$-QDs synthesized from different concentrations of TAA.

<table>
<thead>
<tr>
<th>Active material</th>
<th>Electrolyte</th>
<th>Capacitance</th>
<th>Energy density</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni$_3$Mn$_1$Co@Co$_9$S$_8$-QDs/NF</td>
<td>6 M KOH</td>
<td>492.1 mAh g$^{-1}$ (3534 F g$^{-1}$) at 1 A g$^{-1}$</td>
<td>71.48 Wh kg$^{-1}$</td>
<td>This work</td>
</tr>
<tr>
<td>CoS-NiO</td>
<td>3 M KCl</td>
<td>1527 F g$^{-1}$ at 1 A g$^{-1}$</td>
<td>39 Wh kg$^{-1}$</td>
<td>[1]</td>
</tr>
<tr>
<td>Co$_3$O$_4$/CoS NSs</td>
<td>2 M KOH</td>
<td>1658 F g$^{-1}$ at 1 A g$^{-1}$</td>
<td>23.6 Wh kg$^{-1}$</td>
<td>[4]</td>
</tr>
<tr>
<td>5-NiS@CoS</td>
<td>2 M KOH</td>
<td>1210 F g$^{-1}$ at 1 A g$^{-1}$</td>
<td>24.1 Wh kg$^{-1}$</td>
<td>[5]</td>
</tr>
<tr>
<td>KCu$_7$S$_4$@NiMn LDHs</td>
<td>1 M LiOH</td>
<td>879 F g$^{-1}$ at 1 mV s$^{-1}$</td>
<td>15.9 Wh kg$^{-1}$</td>
<td>[6]</td>
</tr>
<tr>
<td>CC@NiCo-LDH/Co$_9$S$_8$</td>
<td>6 M KOH</td>
<td>2438 F g$^{-1}$ at 5 A g$^{-1}$</td>
<td>38 Wh kg$^{-1}$</td>
<td>[7]</td>
</tr>
<tr>
<td>MC@CF-LDH-3</td>
<td>6 M KOH</td>
<td>903.15 C g$^{-1}$ at 1 A g$^{-1}$</td>
<td>60.82 Wh kg$^{-1}$</td>
<td>[8]</td>
</tr>
<tr>
<td>NiCoP/NiCo-OH30</td>
<td>3 M KOH</td>
<td>1100 F g$^{-1}$ at 1 A g$^{-1}$</td>
<td>34 Wh kg$^{-1}$</td>
<td>[9]</td>
</tr>
</tbody>
</table>

Table S1 Compared the performances reported in our work and those recently reported on LDHs and cobalt sulfide related materials for supercapacitors.

References

