Electronic Supplementary Information

In-Situ Embedding of Cobaltous Sulfide Quantum Dots among Transition Metal Layered Double Hydroxide for High Performance All-Solid-State Asymmetric Supercapacitors

Zhiqiang Liu^{a, 1}, Yanling Qiu^{a, 1}, Aitang Zhang^a, Wenrong Yang^b, Colin J. Barrow^b, Joselito M. Razal^c, Jingquan Liu^{a*}

^aCollege of Materials Science and Engineering, Institute for Graphene Applied

Technology Innovation, Qingdao University, Qingdao, 266071, China.

^bSchool of Life and Environmental Sciences, Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia.

^cInstitute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia.

*Corresponding authors.

Tel: +86 532 83780128.

E-mails: jliu@qdu.edu.cn (Jingquan Liu)

¹Zhiqiang Liu and Yanling Qiu contributed equally to this work.

Figure S1. SEM micrographs of (a-c) Ni_1Mn_3Co -LDH/NF at different magnifications,

(d-i) EDS elemental mapping images of Ni_1Mn_3Co -LDH/NF.

Figure S2. SEM micrographs of (a-c) Ni₂Mn₂Co-LDH/NF at different magnifications, (d-i) EDS elemental mapping images of Ni₂Mn₂Co-LDH/NF.

Figure S3. CV curves of Ni_xMn_{4-x} Co-LDH composited with various Ni/Co ratios at

50 mV s⁻¹.

Figure S4. XRD patterns of the Co-MOF and nickel foam.

Figure S5. (a) N_2 adsorption-desorption isotherms and (b) pore size distribution patterns of Ni_3Mn_1Co -LDH/NF and $Ni_3Mn_1Co@Co_9S_8$ -QDs/NF.

Figure S6. CV curves of the (a) Co-MOF/NF and (b) Ni_1Mn_3Co -LDH/NF and (c) Ni_2Mn_2Co -LDH/NF and (d) Ni_3Mn_1Co -LDH/NF electrode at different scan rates ranging from 5 to 100 mV s⁻¹.

Figure S7. GCD curves of the (a) Co-MOF/NF and (b) Ni_1Mn_3Co -LDH/NF and (c) Ni_2Mn_2Co -LDH/NF and (d) Ni_3Mn_1Co -LDH/NF electrode at different current densities ranging from 1 to 20 A g⁻¹.

Figure S8. A comparison of the specific capacitances of our $Ni_3Mn_1Co@Co_9S_8$ -QDs/NF electrode with those previously reported cobalt sulfide electrode materials.

Figure S9. (a) XRD patterns of the Fe₂O₃@C/CC. The narrow spectra of (b) Fe 2p, (c)

Figure S10. (a) CV curves of the Fe₂O₃@C/CC electrode at different scan rates ranging from 5 to 100 mV s⁻¹ (b) GCD curves of the Fe₂O₃@C/CC electrode at different current densities ranging from 1 to 20 A g⁻¹.

Figure S11 (a, b) TEM images of Co_9S_8 -QDs synthesized from different concentrations of TAA (c-h) CV and GCD curves of Co_9S_8 -QDs synthesized from different concentrations of TAA.

Active material	Electrolyte	Capacitance	Energy density	Ref.
Ni ₃ Mn ₁ Co@Co ₉ S ₈ -QDs/NF	6 М КОН	492.1 mAh g ⁻¹ (3534 F g ⁻¹) at 1 A g ⁻¹	71.48 Wh kg ⁻¹	This work
CoS-NiO	3 M KCl	1527 F g ⁻¹ at 1 A g ⁻¹	39 Wh kg ⁻¹	[1]
Co ₃ O ₄ /CoS NSs	2 М КОН	1658 F g ⁻¹ at 1 A g ⁻¹	23.6 Wh kg ⁻¹	[4]
5-NiS@CoS	2 М КОН	1210 F g ⁻¹ at 1 A g ⁻¹	24.1 Wh kg ⁻¹	[5]
KCu ₇ S ₄ @NiMn LDHs	1 M LiOH	879 F g ⁻¹ at 1 mV s ⁻¹	15.9 Wh kg ⁻¹	[6]
CC@NiCo- LDH/Co ₉ S ₈	6 М КОН	2438 F g ⁻¹ at 5 A g ⁻¹	38 Wh kg ⁻¹	[7]
MC@CF-LDH-3	6 М КОН	903.15 C g ⁻¹ at 1 A g ⁻¹	60.82 Wh kg ⁻¹	[8]
NiCoP/NiCo- OH30	3 М КОН	1100 F g ⁻¹ at 1 A g ⁻¹	34 Wh kg ⁻¹	[9]

Table S1 Compared the performances reported in our work and those recently reported

 on LDHs and cobalt sulfide related materials for supercapacitors.

References

- [1] V. Kumbhar, H. Lee, J. Lee, N. Chodankar and K. Lee, J. Alloy. Compd., 2021, 863, 158064.
- [2] J. Jiang, J. Xu, W. Wang, L. Zhang and G. Xu, Chemistry, 2020, 26, 14903-14911.
- [3] M. Chuai, H. Zhang, Y. Tong, K. Zhang and M. Zhang, Sustain. Energy. Fuels, 2020, 4, 3511-3518.
- [4] Y. Lu, W. Yang, W. Li, M. Chen, L. Shuai, P. Qi, D. Zhang, H. Du, Y. Tang and M. Qiu, J. Alloy. Compd., 2020, 818, 152877.
- [5] Y. Miao, X. Zhang, J. Zhan, Y. Sui, J. Qi, F. Wei, Q. Meng, Y. He, Y. Ren, Z. Zhan and Z. Sun, *Adv, Mater, Inter.*, 2019, 7, 1901618.
- [6] X. Guo, J. Zhang, W. Xu, C. Hu, L. Sun and Y. Zhang, *J. Mater. Chem. A*, 2017, 5, 20579-20587.
- [7] Q. Yang, Y. Liu, L. Xiao, M. Yan, H. Bai, F. Zhu, Y. Lei and W. Shi, *Chem. Eng. J.*, 2018, **354**, 716-726.
- [8] Z. Liu, Y. Liu, Y. Zhong L., Cui, W. Yang, J. M. Razal, C. J. Barrow and J. Liu, J. Power Sources, 2021, 484, 229288.
- [9] X. Li, H. Wu, A. Elshahawy, L. Wang, S. Pennycook, C. Guan and J. Wang, Adv. Funct. Mater., 2018, 28, 1800036.