Supporting Information for

Nitride MXenes as sulfur hosts for thermodynamic and kinetic suppression of polysulfide shuttling: a computational study

Ke Fan^a, Yiran Ying^a, Xin Luo^{*b}, and Haitao Huang^{*a}

^a Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P.R. China

^bState Key Laboratory of Optoelectronic Materials and Technologies, Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou, Guangdong Province, P.R. China, 510275

AUTHOR INFORMATION

Corresponding Author

*E-mail: aphhuang@polyu.edu.hk (H.H.); luox77@mail.sysu.edu.cn (X.L.)

Additional computational methods

The adsorption energy E_{ad} of Li_2S_n (S₈) on the V_2N/V_2NT_2 monolayers was calculated based on the following equation:

$$E_{ad} = E_{MXene + Li_2 S_n(S_8)} - E_{MXene} - E_{Li_2 S_n(S_8)}$$
(1)

where E_{MXene} and $E_{MXene + Li_2S_n(S_8)}$ are the total energy of V₂N/V₂NT₂ before and after adsorption with Li₂S_n (S₈), and $E_{Li_2S_n(S_8)}$ is the total energy of Li₂S_n (S₈).

The differential charge density as a function of space was obtained as the difference between the valence charge density before and after the bonding:

$$\Delta \rho(\vec{r}) = \rho_{MXene + Li_2 S_n(S_8)}(\vec{r}) - \rho_{MXene}(\vec{r}) - \rho_{Li_2 S_n(S_8)}(\vec{r})$$
(2)

where $\rho_{MXene + Li_2S_n(S_8)}(\vec{r})$, $\rho_{Mxene}(\vec{r})$, and $\rho_{Li_2S_n(S_8)}(\vec{r})$ represent the charge density distributions of $Li_2S_n(S_8)$ -adsorbed on V_2N/V_2NT_2 systems, bare V_2N/V_2NT_2 monolayer, and $Li_2S_n(S_8)$ molecule respectively.

Fig. S1 Phonon dispersion spectra of V_2N .

Table S1. DFT-calculated total energies of the three sites for different terminating groups T (see Fig. 1b) in V_2NT_2 phases.

	V_2NO_2 (eV)	V_2NF_2 (eV)	$V_2N(OH)_2 (eV)$	$V_2NS_2 (eV)$
α	-444.42	-441.09	-447.56	-442.43
β	-442.81	-440.42	-446.35	-440.68
γ	-443.86	-440.72	-447.21	-442.08

Table S2. The lattice constants a, b and V-N bond length (in Å) in V₂N and V₂NT₂.

	V ₂ N	V ₂ NO ₂	V ₂ NF ₂	V ₂ N(OH) ₂	V_2NS_2
<i>a</i> , <i>b</i>	2.89	2.90	3.04	3.04	3.07
V(1)-N	1.97	2.04	1.99	2.00	2.06
V(1)-T	-	1.95	2.15	2.14	2.36

Fig. S2 Temperature and total energy as a function of time for (a) V_2NF_2 , (b) V_2NO_2 , (c) $V_2N(OH)_2$, and (d) V_2NS_2 during the AIMD simulation (inset: the structure after 10 ps AIMD simulation. V, N, F, O, H, and S atoms are represented in brown, grey, purple, red, pink, and blue, respectively).

Fig. S3 (a) Optimized geometries of S_8 and Li_2S_n (n = 1, 2, 4, 6, and 8) with bond lengths (in Å) and angles labeled in the figure and (b) the comparison with their most stable structures in ref. 1 obtained by using B3LYP/6-311G(3df)-level quantum chemistry calculations.

S ₈ @V₂N	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$\$\$\$\$	\$\$\$\$\$	\$} \$\$\$\$	\$\$\$\$\$	\$\$\$\$ \$
Li ₂ S ₈ @V ₂ N	~% \$\$\$\$\$	\$\$\$\$ **	*** ****	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u>چچچ</u>	5000 80000
Li ₂ S ₆ @V ₂ N	\$\$ \$\$\$\$	\$\$ \$\$\$\$\$	\$\$\$\$\$	\$ \$ \$ \$ \$ \$ \$ \$	\$ \$\$\$\$	\$\$\$\$
Li ₂ S ₄ @V ₂ N	& \$\$\$\$\$	\$ \$\$\$\$	چې چېچېچ	X 33333	\$\$ \$\$\$\$\$	\$\$ \$\$\$\$\$
Li ₂ S ₂ @V ₂ N	~~ \$\$\$\$\$	\$ \$	~~ \$\$\$\$\$	<u>م</u> م	% \$\$\$\$\$	ي جيجي
Li ₂ S@V ₂ N	° \$	°	° \$\$\$\$	् <u>द्र</u> २२२२२	\$ \$\$\$\$	\$ \$\$\$\$\$

 $S_{3}@V_{2}NO_{2}$ NO_{2} NO_{2}

	***	**	ጽዳ	Ŷ		Î
S ₈ @V ₂ NF ₂	XXXX		****	****	*****	****
	~~~?	~~~~	~~~~	**	5	3
258@V2INF2	XXXX	<b>XXXX</b>	XXXX	XXXX	****	****
	<b>\$</b>	<b>&amp;</b>	<b>*</b>			*
5 ₆ @V ₂ INF ₂	XXXX	<b>3888</b>		3888£	XXXX	3888 -
	🄈	۶۰	٨	23	23	22
S ₄ @V ₂ NF ₂	XXXX	XXXX	****	****	****	XXXX
	>>	8	<b>\$</b> ~	<b>~</b> ~	<u>~</u> 2	~~
5 ₂ @V ₂ NF ₂		XXXX	ACC -	XXXX	XXXX	XXXX
	8	<b>?</b>	\$	Å	6	ീ
₂ S@V ₂ NF ₂	XXXX			****	XXXX	×

S ₈ @V ₂ N(OH) ₂	****	****	****	\$ \$		
Li ₂ S ₈ @V ₂ N(OH) ₂	***					
Li ₂ S ₆ @V ₂ N(OH) ₂	****					
Li ₂ S ₄ @V ₂ N(OH ₂			****	****		
Li ₂ S ₂ @V ₂ N(OH) ₂				***		****
Li ₂ S@V ₂ N(OH) ₂	****	****		****	****	****



Fig. S4 A total number of 180 different adsorption configurations of  $S_8$  and  $Li_2S_n$  on the surface of  $V_2N$ ,  $V_2NO_2$ ,  $V_2NF_2$ ,  $V_2N(OH)_2$ , and  $V_2NS_2$ . The V, N, O, F, H, Li, and S atoms are distinguished by brown, gray, red, purple, pink, orange, and blue color, respectively.



Fig. S5 Ratio of vdW ( $R_{vdW}$ ) interaction of  $S_8$  and  $Li_2S_n$  on  $V_2NO_2$ ,  $V_2NF_2$ , and  $V_2NS_2$ .



**Fig. S6** The optimized structure of  $S_8$  and  $Li_2S_n$  on the surface of (a)  $V_2NO_{2-x}$ , (b)  $V_2NF_{2-x}$ , and (c)  $V_2NS_{2-x}$ , (x = 1/16). The V, N, O, F, Li, and S atoms are distinguished by brown, gray, red, purple, orange, and blue color, respectively.



**Fig. S7** Electron localization functions (ELF) of the (110) slice of (a)  $V_2NO_2$ ; (b)  $V_2NO_{2-x}$ ; (c)  $V_2NF_2$ ; (d)  $V_2NF_{2-x}$ ; (e)  $V_2NS_2$ ; (f)  $V_2NS_{2-x}$ . The scale bar shows the isodensity values of ELF. The values of 1.00 and 0.50 correspond to fully localized and fully delocalized electrons, respectively, while the value 0.00 refers to very low charge density.



Fig. S8 Configurations of  $S_8$  and  $Li_2S_n$  bonding with (a) DOL and (b) DME. (c) Adsorption energies of  $S_8$  and  $Li_2S_n$  with DOL and DME.



**Fig. S9** Energy profiles for Li₂S decomposition on  $8 \times 4 \times 1$  supercells of (a) V₂NO₂, (b) V₂NF₂, and (c) V₂NS₂, and (d) illustration of intermediate structures during Li₂S decomposition on V₂NS₂ surface through the favorable pathway as an example. The V, N, S, and Li atoms are distinguished by brown, gray, blue, and orange color, respectively.



**Fig. S10** Energy profiles for  $Li^+$  diffusion on (a)  $V_2NO_2$ , (b)  $V_2NF_2$  and (c)  $V_2NS_2$ , and (d) illustration of the diffusion of single Li atom over surface through the favorable pathway. The V, N, O and Li atoms are distinguished by brown, gray, red, and orange color, respectively.

System	Li ⁺ diffusion barrier (eV)	Reference
V ₂ NO ₂	0.21	This work
V ₂ NF ₂	0.17	This work
V ₂ NS ₂	0.16	This work
V ₂ CS ₂	0.17	2
V ₂ CO ₂	0.26	2
V ₂ C	0.19	2
Ti ₃ C ₂ O ₂	0.236	3
$Ti_3C_2S_2$	0.188	3
Ti ₃ C ₂ F ₂	0.187	3
Ti ₃ C ₂ Cl ₂	0.196	3
Ti ₂ NS ₂	0.19	4
V ₂ NS ₂	0.17	4
Ti ₃ CNF ₂	0.24	5
Ti ₃ CNO ₂	0.26	5

Table S3.  $Li^{\scriptscriptstyle +}$  diffusion barriers on  $V_2NT_2$  and other MXenes reported in literature.

#### **Supplementary References**

- L. Wang, T. Zhang, S. Yang, F. Cheng, J. Liang and J. Chen, *J. Energy Chem.*, 2013, 22, 72-77.
- Y. Wang, J. Shen, L.-C. Xu, Z. Yang, R. Li, R. Liu and X. Li, *Phys. Chem. Chem. Phys.*, 2019, 21, 18559-18568.
- D. Wang, F. Li, R. Lian, J. Xu, D. Kan, Y. Liu, G. Chen, Y. Gogotsi and Y. Wei, ACS Nano, 2019, 13, 11078-11086.
- 4. V. Shukla, N. K. Jena, S. R. Naqvi, W. Luo and R. Ahuja, *Nano Energy*, 2019, **58**, 877-885.
- 5. X. Chen, Z. Kong, N. Li, X. Zhao and C. Sun, *Phys. Chem. Chem. Phys.*, 2016, **18**, 32937-32943.