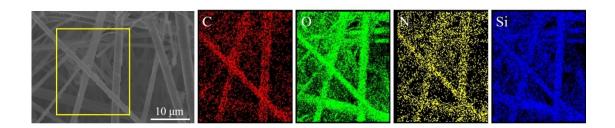

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information


Multifunctional SnSe-C composite modified 3D scaffolds to regulate lithium nucleation and fast transport for dendrite-free lithium metal anode

Xiaojie Shen, a Guangyu Zhao, *b and Naiqing Zhang *ab

- a. State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, China.
- b. Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, 150001, China. Email: zhaogy810525@gmail.com; znqmww@163.com

Figure S1. Morphologies of PAni/GFs fabricated by aniline chemical oxidation polymerization on GFs (a) low and (b) high magnification.

Figure S2. EDS elemental mapping diagram of C, O, N and Si of the PAni/GFs matrix.

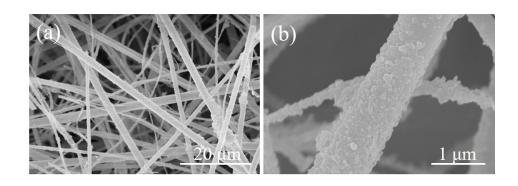


Figure S3. Morphologies of Sn-MOFs/PAni/GFs (a) low and (b) high magnification.

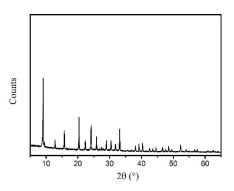
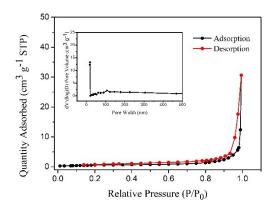



Figure S4. XRD pattern of synthesized of Sn-MOFs.

Figure S5. The nitrogen adsorption-desorption isotherm of the Sn-MOFs powder and the inset is corresponding pore-size distribution.

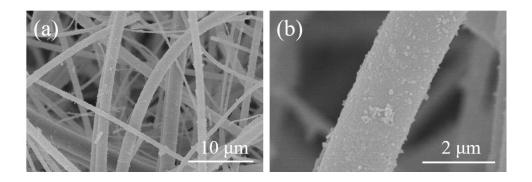
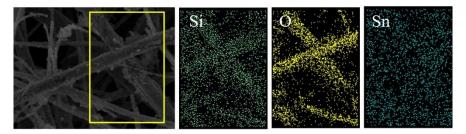



Figure S6. Morphologies of SnO_x-C/MGFs (a) low and (b) high magnification.

Figure S7. EDS elemental mapping diagram of Si, O and Sn of the SnO_x-C/MGFs matrix.

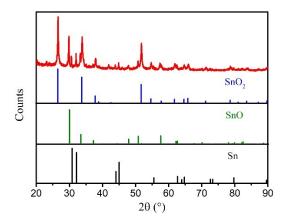
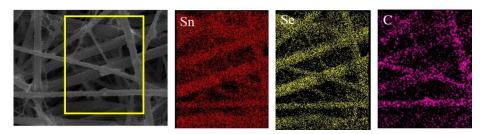
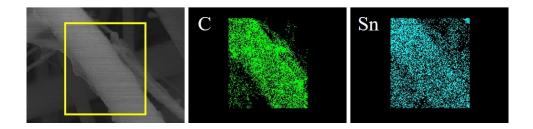




Figure S8. XRD pattern of synthesized of SnO_x -C/MGFs.

Figure S9. EDS elemental mapping diagram of Sn, Se and C of the SnSe-C/MGFs matrix.

Figure S10. EDS elemental mapping diagram of C and Sn of the Sn-C/MGFs matrix.

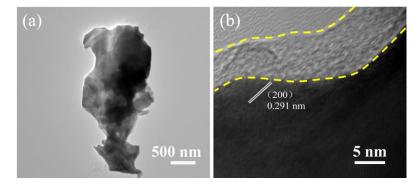
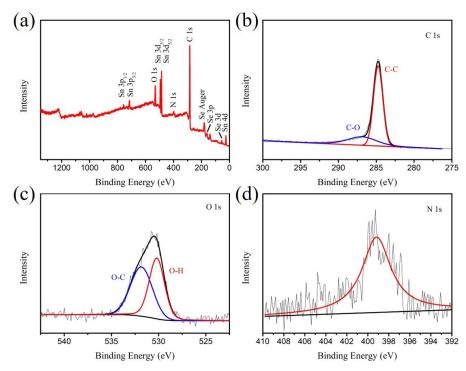



Figure S11. TEM of Sn-C/MGFs: (a) low resolution and (b) high resolution.

Figure S12. (a) the survey of the SnSe-C/MGFs scaffold XPS spectrum. (b) High-resolution C 1s XPS spectrum. (c) High-resolution O 1s XPS spectrum. (d) High-resolution N 1s XPS spectrum.

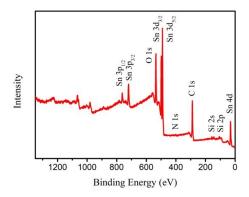
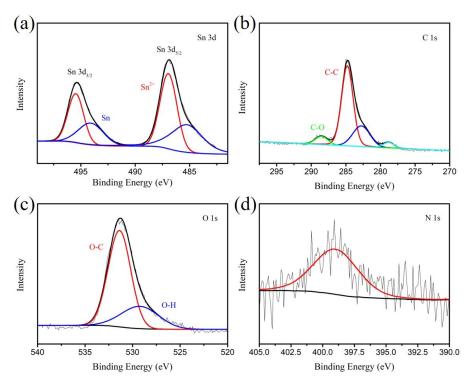



Figure S13. the survey of the Sn-C/MGFs scaffold XPS spectrum.

Figure S14. (a) High-resolution Sn 3d XPS spectrum. (b) High-resolution C 1s XPS spectrum. (c) High-resolution O 1s XPS spectrum. (d) High-resolution N 1s XPS spectrum.

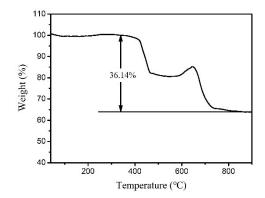
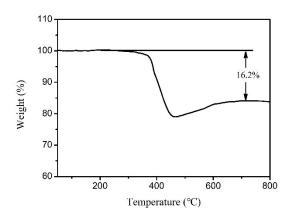
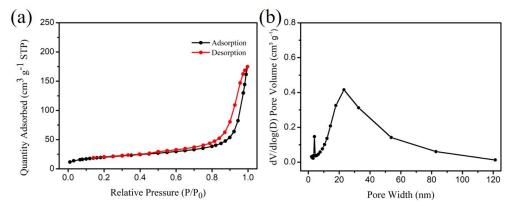
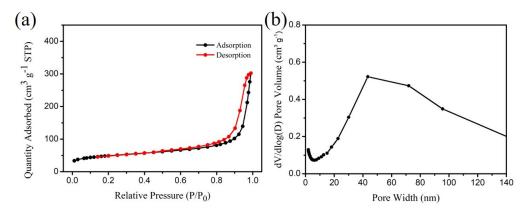
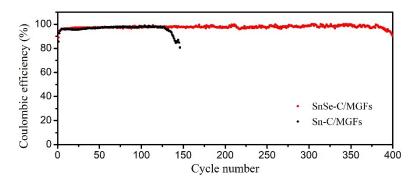
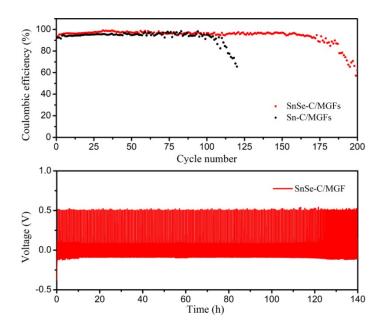
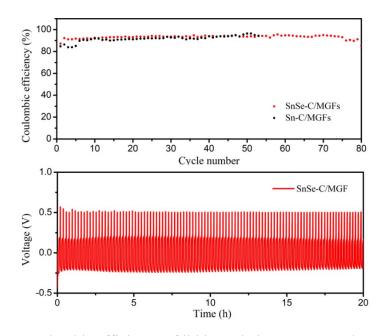


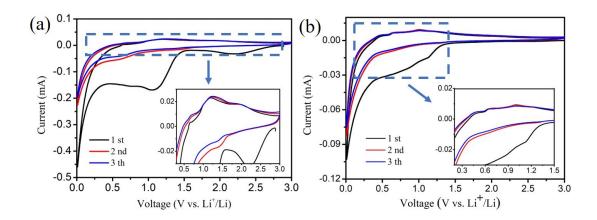
Figure S15. TGA of SnSe-C composite.

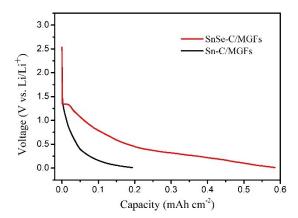




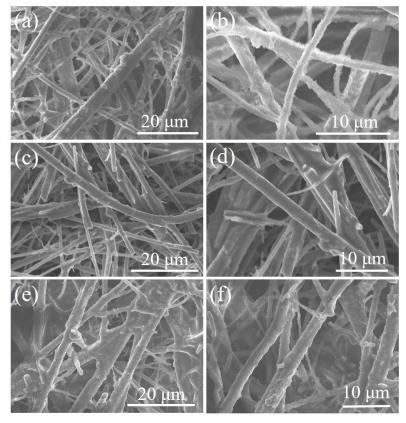

Figure S16. TGA of Sn-C composite.

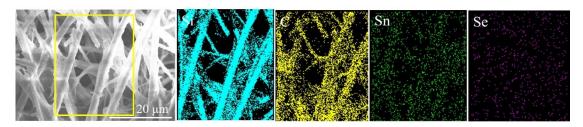

Figure S17. Specific surface area measurement of SnSe-C composite: (a) Nitrogen adsorption/desorption curve (b) corresponding pore size distribution.

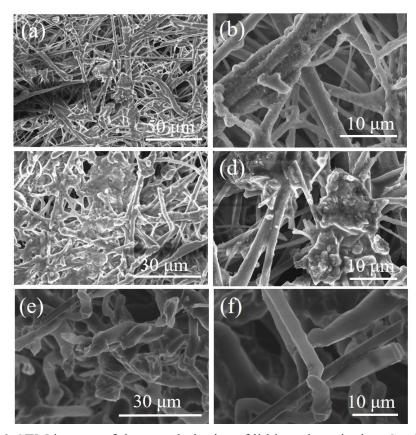

Figure S18. Specific surface area measurement of Sn-C composite: (a) Nitrogen adsorption/desorption curve (b) corresponding pore size distribution.

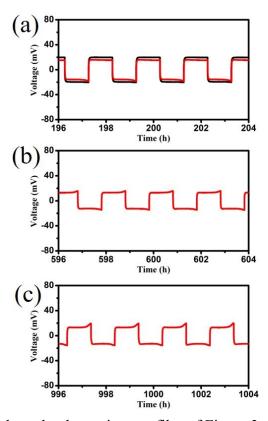

Figure S19. Coulombic efficiency of lithium plating on SnSe-C/MGFs and Sn-C/MGFs with amount of 1 mA h cm⁻² at 2 mA cm⁻².

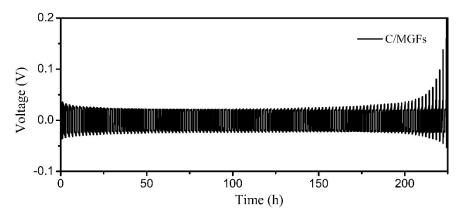

Figure S20. Coulombic efficiency of lithium plating on SnSe-C/MGFs and Sn-C/MGFs and corresponding discharge/charge curves with amount of 1 mA h cm⁻² at 3 mA cm⁻².

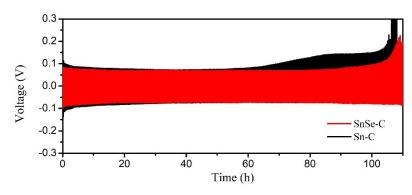

Figure S21. Coulombic efficiency of lithium plating on SnSe-C/MGFs and Sn-C/MGFs and corresponding discharge/charge curves with amount of 1 mA h cm⁻² at 10 mA cm⁻².


Figure S22. CV curves of SnSe-C/MGFs and Sn-C/MGFs anode countering to lithium metal plate. Test voltage range is from 2.0 V to 0.01 V and the sweep speed is 0.1 mV s⁻¹. (a) SnSe-C/MGFs; (b) Partial enlarged view of (a); (c) Sn-C/MGFs; (d) Partial enlarged view of (c).


Figure S23. First cycle discharge voltage–time curve of SnSe-C/MGFs and Sn-C/MGFs at 0.05 mA cm⁻².


Figure S24. SEM images of the morphologies of lithium deposited on SnSe-C/MGFs at a current density of 1mA cm⁻² with the capacity of (a-b) 1 mAh cm⁻² (c-d) 3 mAh cm⁻² (e-f) 5 mAh cm⁻².


Figure S25. EDS elemental mapping diagram of Si, C, Sn and Se of the SnSe-C/MGFs after deposited 5 mAh cm⁻² lithium.


Figure S26. SEM images of the morphologies of lithium deposited on Sn-C/MGFs at a current density of 1mA cm⁻² with the capacity of (a-b) 1 mAh cm⁻² (c-d) 3 mAh cm⁻² (e-f) 5 mAh cm⁻².

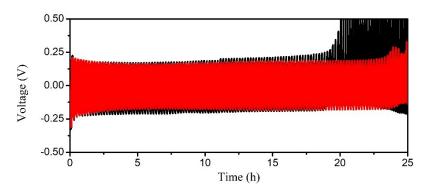

Figure S27. Partial enlarged voltage-time profiles of Figure 3a at 100th, 300th and 500th cycles.

Figure S28. Voltage-time profiles of the symmetrical Li|Li/-C batteries with a capacity of 1 mA h cm⁻² Li at 1 mA cm⁻².

Figure S29. Voltage-time profiles of the symmetrical Li|Li/SnSe-C and Li|Li/Sn-C batteries with a capacity of 1 mA h cm⁻² Li at 5 mA cm⁻².

Figure S30. Voltage-time profiles of the symmetrical Li|Li/SnSe-C and Li|Li/Sn-C batteries with a capacity of 1 mA h cm⁻² Li at 10 mA cm⁻².

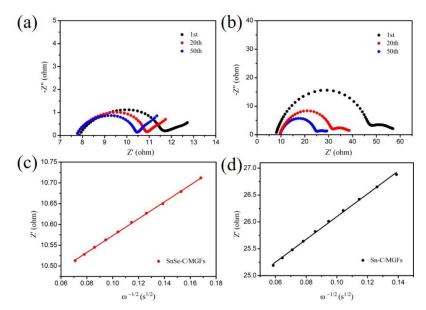


Figure S31. EIS curves of (a) Li/SnSe-C and (b) Li/Sn-C at different cycles in symmetrical cells. The fitted lines of the impedance versus $\omega^{-1/2}$ for Li/SnSe-C anode (c) and Li/Sn-C anode (d).

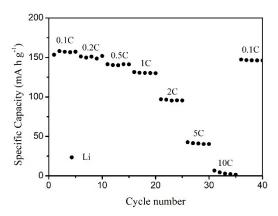
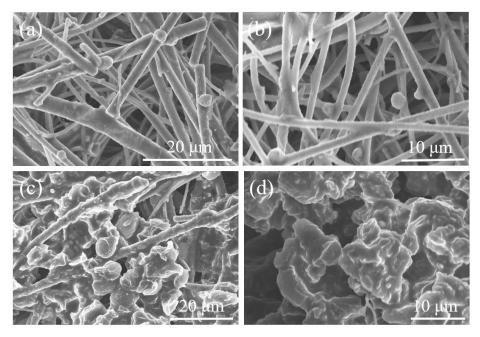



Figure S32. The rate performance of pristine Li in full cells.

Figure S33. Morphologies of Li/SnSe-C anode (a-b) and Li/Sn-C anode (c-d) after 100 cycles at 2 C rate in full cells.

Figure S34. The cycling performances of Li/SnSe-C and Li/Sn-C at the rate of 5 C.

Table S1. Coulombic efficiency of SnSe-C/MGFs compared with various anode substrates.

substrates	Current/Capacity	CE	cycle	Max current	Ref.
	(mA cm ⁻² /mAh cm ⁻²)	(%)		(mA cm ⁻²)	
PDA@3D Cu	0.5/1	97.3	200	1	Energy Storage
					Materials, 2020,
					29, 84-91
ZnO@HPC	1/1	97.1	200	2	Nano Energy,
					2017, 37, 177-186.
3D PI-coated copper	0.5/1	90	150	2	Nat. Commun. 2018,
					9, 464.
g-C ₃ N ₄ @ Ni foam	2/1	97	140	3	Adv. Energy Mater.
					2019, 9, 1803186.
Nitrogen-doped	1/1	98	250	5	J. Mater. Chem. A,
graphdiyne nanowall					2019, 48, 27535-
on Cu foam					27546.
3D oxidized	3/1	71.3	120	3	Nano letters, 2015,
polyacrylonitrile					15, 2910-2916.
nanofiber layer					
3D copper nanowire-	1/1	97.4	150	3	Adv. Mater. 2019,
phosphide					31, 1904991.
This work	1/1	98.2	500	10	
	5/1	96.7	150		
	10/1	93.5	80		