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Figures

Fig. S1 TEM images of (a)-(b) Pd"-(C;oH;-NH;) complex, and (c)-(d) NiPc@Pd!-
(C1oH7-NH,) complex.
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Fig. S2 UV-vis spectra of Pd"-(C;,H;-NH,) solution and NiPc@Pd"-(C;oH;-NH,)
solution.
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Fig. S3 (a) Representative TEM image of Ni SAs-Pd@NC and (b) corresponding
particle size distribution diagram.



Fig. S4 TEM images of the products prepared using the standard protocol of Ni SAs-
Pd@NC except for the feeding ratio of Pd"-(C;oH,-NH,) and NiPc. (a)-(b) 4:1, (¢)-(d)
1:1.
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Fig. S5 XRD pattern of the products prepared using the standard protocol of Ni

SAs-Pd@NC except for the feeding ratio of Pd"-(C;yH;,-NH,) and NiPc. (a) 4:1, (b)
1:1.
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Fig. S6 N, adsorption-desorption isotherms of the as-prepared Ni SAs-Pd@NC. Inset
shows the pore-size distribution curve.
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Fig. S7 EXAFS fitting curves of Ni SAs-Pd@NC at K space. The emergence of burrs
between 8~14 angstroms could be related to the relative large noise and multiple
electron scattering effect of the sample. Due to such obvious noise, the data from 8~14
angstroms may not be the real structure information of the sample. Accordingly, it is
possible to show unmatched fitting degree of from 8~14 angstroms.



Table S1. EXAFS fitting parameters at the Ni K-edge for various samples (5,>=0.80)

Sample Shell Ne RAAY | 62x103(A%¢ |  AEy(eV)? R factor
Ni foil Ni-Ni 12* 2.48+0.01 6.2+0.3 -5.7+0.6 0.002
Ni SAs- .

PA@NC Ni-N 4.1+1.6 2.07+0.04 8.4+6.1 -0.5+£2.3 0.013

2N: coordination numbers; *R: bond distance; *: Debye-Waller factors; ¢ AEy: the inner potential

correction. R factor: goodness of fit.
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Fig. S8 (a) Full XPS survey of Ni SAs-Pd@NC. High-resolution XPS survey at (b) Pd
3d region, (¢) Ni 2p region, (d) N Is region, (e) C 1s region.
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Fig. S9 (a)-(b) TEM images and (c¢) XRD pattern of Pd@NC.
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Fig. S10 (a)-(b) TEM images and (c) XRD pattern of Ni SAs@NC.

(a) (b) [nizp
C1s
3 >
A S
> N 1s -
= =
@ 01s 2
L e A
£ £ sat. ]« sat.
P
T T T T T T T T T T T T T T T T T T T T
900 800 700 600 500 400 300 200 880 875 870 865 860 855 850
Binding energy (eV) Binding Energy (eV)

Fig. S11 (a) Full XPS survey of Ni SAs-Pd@NC. (b) High-resolution XPS survey at
Ni 2p region.
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Fig. S12 ORR polarization curves of Ni SAs-Pd@NC before and after ADT.
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Fig. S14 OER LSV curves of Ni SAs-Pd@NC before and after ADT.
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Fig. S15 Open circuit voltage (OCV) curve of Zn-air batteries with Ni SAs-Pd@NC.
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Fig. S16 (a) Charge and discharge polarization curves for rechargeable Zn-air batteries,
(b) and corresponding power density curves.
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Fig. S17 Discharge and charge voltage profiles of Zn-air batteries with (a) Ni
SAs-Pd@NC and (b) Pt/C + RuO, at 10 mA cm™2.

Table S2. Comparison of the potential difference between ORR and OER (AE = E—

- Ey) of N1 SAs-Pd@NC with other electrocatalysts reported previously.

En/V

EN

AE/N

Ref.

Ni SAs-Pd@NC 0.84

1.61

0.77

This work

0.81

1.60

0.79
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Mn0.6(Fe 3Nig.7)0.40x
Co-600N, 0.77 1.55 0.78 2
MCCF/NiMn-MOFs 0.70 1.51 0.81 3
Co@N-CNTF-2 0.79 1.59 0.80 4
CoNP-PTCOF 0.85 1.68 0.83 3
W,N/WC heterostructures 0.81 1.61 0.80 :
1/Carbon nanotubes 0.84 1.73 0.89 7
CoOx@CoN,/NCNF550 0.78 1.69 0.91 8
ODAC-Co0O-15 0.82 1.65 0.86 9
4 nm-CoOx/N-RGO 0.83 1.65 0.82 10
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