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Figures

Fig. S1 TEM images of (a)-(b) PdII-(C10H7-NH2) complex, and (c)-(d) NiPc@PdII-
(C10H7-NH2) complex.
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Fig. S2 UV-vis spectra of PdII-(C10H7-NH2) solution and NiPc@PdII-(C10H7-NH2) 
solution. 

Fig. S3 (a) Representative TEM image of Ni SAs-Pd@NC and (b) corresponding 
particle size distribution diagram.



Fig. S4 TEM images of the products prepared using the standard protocol of Ni SAs-
Pd@NC except for the feeding ratio of PdII-(C10H7-NH2) and NiPc. (a)-(b) 4:1, (c)-(d) 
1:1.

Fig. S5 XRD pattern of the products prepared using the standard protocol of Ni 
SAs-Pd@NC except for the feeding ratio of PdII-(C10H7-NH2) and NiPc. (a) 4:1, (b) 
1:1.



Fig. S6 N2 adsorption-desorption isotherms of the as-prepared Ni SAs-Pd@NC. Inset 
shows the pore-size distribution curve.

Fig. S7 EXAFS fitting curves of Ni SAs-Pd@NC at K space. The emergence of burrs 
between 8~14 angstroms could be related to the relative large noise and multiple 
electron scattering effect of the sample. Due to such obvious noise, the data from 8~14 
angstroms may not be the real structure information of the sample. Accordingly, it is 
possible to show unmatched fitting degree of from 8~14 angstroms. 



Table S1. EXAFS fitting parameters at the Ni K-edge for various samples (Ѕ0
2=0.80)

Sample Shell Na R(Å)b σ2×103(Å2)c ΔE0 (eV)d R factor

Ni foil Ni-Ni 12* 2.48±0.01 6.2±0.3 -5.7±0.6 0.002

Ni SAs-
Pd@NC Ni-N 4.1±1.6 2.07±0.04 8.4±6.1 -0.5±2.3 0.013

aN: coordination numbers; bR: bond distance; cσ2: Debye-Waller factors; d ΔE0: the inner potential 
correction. R factor: goodness of fit. 

Fig. S8 (a) Full XPS survey of Ni SAs-Pd@NC. High-resolution XPS survey at (b) Pd 
3d region, (c) Ni 2p region, (d) N 1s region, (e) C 1s region.

Fig. S9 (a)-(b) TEM images and (c) XRD pattern of Pd@NC.



Fig. S10 (a)-(b) TEM images and (c) XRD pattern of Ni SAs@NC.

Fig. S11 (a) Full XPS survey of Ni SAs-Pd@NC. (b) High-resolution XPS survey at 
Ni 2p region.

Fig. S12 ORR polarization curves of Ni SAs-Pd@NC before and after ADT.



Fig. S13 TEM image of Ni SAs-Pd@NC after the ADT.

Fig. S14 OER LSV curves of Ni SAs-Pd@NC before and after ADT.

Fig. S15 Open circuit voltage (OCV) curve of Zn-air batteries with Ni SAs-Pd@NC.



Fig. S16 (a) Charge and discharge polarization curves for rechargeable Zn-air batteries, 
(b) and corresponding power density curves.

Fig. S17 Discharge and charge voltage profiles of Zn-air batteries with (a) Ni 
SAs-Pd@NC and (b) Pt/C + RuO2 at 10 mA cm−2. 

Table S2. Comparison of the potential difference between ORR and OER (∆E = Ej=10 

- E1/2) of Ni SAs-Pd@NC with other electrocatalysts reported previously.

E1/2/V Ej/V ∆E/V Ref.
Ni SAs-Pd@NC 0.84 1.61 0.77 This work
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Mn0.6(Fe0.3Ni0.7)0.4Ox

Co-600N2 0.77 1.55 0.78 2

MCCF/NiMn-MOFs 0.70 1.51 0.81 3

Co@N-CNTF-2 0.79 1.59 0.80 4

CoNP-PTCOF 0.85 1.68 0.83 5

W2N/WC heterostructures 0.81 1.61 0.80 6

1/Carbon nanotubes 0.84 1.73 0.89 7

CoOx@CoNy/NCNF550 0.78 1.69 0.91 8

ODAC-CoO-15 0.82 1.65 0.86 9

4 nm-CoOx/N-RGO 0.83 1.65 0.82 10
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