Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information

High-precision, stretchable kirigami-capacitive sensors with ultra-low cross-sensitivity for body temperature monitoring

Yuyan Yu,¹ Shuhua Peng,¹ Zhao Sha,¹ Xinying Cheng,¹ Shuying Wu,^{2, 1*} and Chun H. Wang^{1*}

¹School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052, Australia ²School of Engineering, Macquarie University, Sydney NSW 2109, Australia

*Correspondence author: <u>chun.h.wang@unsw.edu.au</u>; <u>shuying.wu@mq.edu.au</u>

Fig. S1 Diagram (a) and optical image (b) of the testing fixture for dielectric constant.

Fig. S2 Maximum strain at 100% external strain versus geometry parameters. For (a), 1 = 8mm, d = 1mm, r = 0.4 mm; for (b), 1 = 8mm, g = 2 mm, r = 0.4 mm; for (c), 1 = 8mm, d = 1mm, g = 2 mm.

Fig. S3 (a) Resistance of the AgNWs electrode (L: 20 mm, W: 10 mm) under strain up to 100% strain; (b) Relative resistance changes of the AgNWs electrode (L: 20 mm, W: 10 mm) in a 100% strain cycle; (c) and (d) top view SEM images of the AgNWs electrode layer.

Fig. S4 Simulated and experimental relative capacitance change of sensors over temperature. (a) Uncut sensor, Kirigami sensor at 0% (b), 50% (c), and 100% (d) strains.

Fig. S5 Relative capacitance change of the kirigami AgNWS-TPU sensor in the temperature range from 5 to 50 $^\circ$ C.

Fig. S6 Relative capacitance change of three individually-made TPU-AgNWs sensors upon heating.

Fig. S7 (a) The relative capacitance changes of the AgNWs-TPU sensor at the 1st and 100th stretching cycles; (b) The relative capacitance changes of the AgNWs-TPU sensor upon heating after the 1st and 100th stretching cycles.

Fig. S8 The relative resistance changes of the CNF-reinforced strain sensor when being stretched.

Fig. S9 Optical images of kirigami sensor (a) and the conjunction area of this sensor before (a) and after (b) 1000 80% strain cycles.

Sensors	Temperature sensitivity (°C ⁻¹)		
Sensor 1	0.0070		
Sensor 2	0.0063		
Sensor 3	0.0073		
Standard variation	0.0005		
Coefficient of variation	7.5%		

Table S1. Temperature sensitivity of three random sensors made under the same conditions

Sensors	Sensor type	Range (°C)	Sensitivity (°C ⁻¹)	Linearity	Resolution (°C)	Strain range	Reference
FSSF	Resistive	30 - 80	0.008	linear	0.37	50%	1
AgNWs- PI	Resistive	25-60	0.0038	Linear	0.16	100%	2
Graphene PDMS	Resistive	25 -75	0.0076	Linear	N/A	20%	3
PEDOT:PSS /SWCNTs Fibre	Resistive	20 - 50	0.0093	Nonlinear	N/A	220%	4
carbon nanotube transistors	Circuit	15-55	-25 mV	0.99	2	60%	5
SWCNTs/AgNW sensor	Circuit	0-100	37 mV	Linear	N/A	40%	6
AgNWs-TPU sensor	Capacitive	30 - 45	0.007	0.997	0.14	100%	This work

Table S2. Summary of recently reported strain-insensitive temperature sensors.

Reference:

- 1. T. Q. Trung, T. M. L. Dang, S. Ramasundaram, P. T. Toi, S. Y. Park, N.-E. J. A. a. m. Lee and interfaces, *Acs Applied Materials & Interfaces*, 2018, 11, 2317-2327.
- 2. Z. Cui, F. R. Poblete and Y. Zhu, *ACS applied materials interfaces*, 2019, 11, 17836-17842.
- Z. Wang, W. Gao, Q. Zhang, K. Zheng, J. Xu, W. Xu, E. Shang, J. Jiang, J. Zhang, Y. J. A. a. m. Liu and interfaces, *Acs Applied Materials & Interfaces*, 2018, 11, 1344-1352.
- 4. J. Lee, D. Kim, S. Chun, J. H. Song, E. S. Yoo, J. K. Kim and C. Pang, *Advanced Materials Technologies*, 2020, 5, 2000073.
- 5. C. Zhu, A. Chortos, Y. Wang, R. Pfattner, T. Lei, A. C. Hinckley, I. Pochorovski, X. Yan, J. W.-F. To and J. Y. J. N. E. Oh, *Nature Electronics*, 2018, 1, 183-190.
- 6. Y. Y. Xin, J. Zhou and G. Lubineau, *Journal of Materials Chemistry A*, 2019, 7, 24493-24501.