Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Supporting Information for

Amidation Induced Self-Reduction of *p*-GO with Lewis-Base Termination for All-Inorganic CsPbIBr₂ Perovskite Solar Cells

Jian Du,^{a,b} Jialong Duan,^{a,*} Qiyao Guo,^a Yanyan Duan,^c Xiya Yang,^a Quanzhu Zhou^d and Qunwei Tang^{a,*}

^a College of Information Science and Technology, Jinan University, Guangzhou 510632, PR China;

^b School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034,

China;

^c State Centre for International Cooperation on Designer Low-Carbon and Environmental Material

(SCICDLCEM), School of Materials Science and Engineering, Zhengzhou University Zhengzhou

450001 (P. R. China);

^{*d*} BTR New Material Group Co., Ltd., Shenzhen (China).

*Corresponding Author. Email address: duanjialong@jnu.edu.cn (J.L. Duan);

tangqunwei@jnu.edu.cn (Q.W. Tang).

Fig. S1 (a) XPS survey scans and high-resolution XPS spectra of N 1s and F 1s in (b) An-GO and (cd) FA-GO.

Fig. S2 FTIR spectra of GO, An-GO and FA-GO samples.

Fig. S3 AFM images and the corresponding thickness of (a) GO and (b) FA-GO interlayers.

Fig. S4 XRD patterns of GO, An-GO and FA-GO.

Fig. S5 Raman spectra of GO, An-GO and FA-GO.

Fig. S6 Energy-level diagram of CsPbIBr₂ PSC. The energy level of CsPbIBr₂ perovskite film is obtained from previous work.^[S1]

Fig. S7 XPS spectra of Cs 3d, I 3d and Br 3d in CsPbIBr₂, CsPbIBr₂ + GO, CsPbIBr₂ + An-GO and CsPbIBr₂ + FA-GO.

Fig. S8 High-resolution XPS spectra of O 1s in (a) GO and FA-GO and (b) $CsPbIBr_2 + GO$ and $CsPbIBr_2 + FA-GO$.

Fig. S9 (a) XRD pattern of synthesized CsPbIBr₂ film on FTO/c-TiO₂ substrate. (b) Optical absorbance of CsPbIBr₂ film. (c) The bandgap of CsPbIBr₂ was calculated to be 2.09 eV.

Fig. S10 SEM image of An-GO covered perovskite film.

Fig. S11 The elemental mapping images in $CsPbIBr_2 + FA-GO$ film.

Fig. S12 EDS spectrum of FA-GO supported on CsPbIBr₂ film.

Fig. S13 *J-V* curves of the (a) control and (b) FA-GO tailored PSCs under forward and reverse scan directions.

Fig. S14 Statistical V_{oc} , FF and J_{sc} distribution of solar cells with and without treatment.

Fig. S15 Dark current curves for the electron-only devices of perovskite films with and without GO.

Fig. S16 Transient photovoltage of fabricated CsPbIBr₂ films with and without FA-GO.

Fig. S17 Electron lifetime calculated from $V_{\rm oc}$ decay curves of various devices.

Fig. S18 Dark *J-V* curves of devices with and without GO.

Fig. S19 Contact angles of $CsPbIBr_2$ and $CsPbIBr_2/FA-GO$ films.

Fig. S20 Cross-sectional SEM images and corresponding elemental mapping images of the whole devices (a) without and (b) with FA-GO after aging treatment at 150 °C for 24 h.

	$V_{\rm oc}$	$J_{\rm sc}$ (mA cm ⁻		PCE	Ref.
Devices	(V)	²)	FF (%)	(%)	
FTO/c-TiO ₂ /CsPbIBr ₂ /FA-GO/Carbon	1.318	11.87	70.84	11.08	This
					work
FTO/TiO ₂ /CsPbIBr ₂ /Spiro-OMeTAD/Au	1.12	11.65	72.39	9.44	[S2]
FTO/TiO ₂ /CsPbIBr ₂ /carbon	1.08	10.88	64	7.52	[83]
$FTO/c\text{-}TiO_2/CsPb_{0.99}Zn_{0.01}IBr_2/Spiro-$	1 28	11.92	69	10.16	[S4]
OMeTAD/Ag	1.20				
FTO/SnO ₂ /CsPbIBr ₂ /carbon	1.19	9.76	57	6.79	[85]
$FTO/c\text{-}TiO_2/CsPbI_{1+x}Br_{2-x}/carbon$	1.186	12.3	75	10.94	[S6]
FTO/SnO ₂ /CsPbIBr ₂ -PEI/CsPbIBr ₂ -	1 25	13 30	68	11.30	[S7]
MA/CsPbIBr ₂ /NiO _x /Ag	1.29	15.50			
FTO/c-TiO ₂ /CsPbIBr ₂ /Carbon	1.338	11.73	65	10.20	[S8]
FTO/TiO ₂ /SmBr ₃ /Sm-doped CsPbIBr ₂ /Spiro-	1 17		-	10.88	[S9]
OMETAD/Au	1.17	-			
FTO/c-TiO ₂ /CsBr/CsPbIBr ₂ /Carbon	1.26	11.80	72	10.71	[S10]
ITO/Cl-TiO ₂ /CsPbIBr ₂ /BHJ-2/MoO ₃ /Al	1.22	12.50	72.66	11.08	[S11]
FTO/ TiO ₂ /CsPbIBr ₂ /PCBM/Ag	1.25	11.63	74	10.78	[S12]
FTO/TiO ₂ /CsPbIBr ₂ /PCBM/Ag	1.21	11.58	69	10.48	[\$13]
FTO/c-TiO ₂ /CsPbIBr ₂ /Spiro-OMeTAD/Au	1.10	12.03	65.40	8.65	[S14]
ITO/SnO ₂ /bulk CsPbIBr ₂ /QDs CsPbIBr ₂ /Spiro- OMeTAD/Au	1.22	9.41	71.36	8.16	[S15]
ITO/SnO ₂ /CsPbIBr ₂ /Spiro-OMeTAD/Au	1.27	9.21	71.80	8.43	[S16]
FTO/c-TiO ₂ /CsPbIBr ₂ /Carbon	1.14	9.11	63	6.55	[S17]

Table S1. Summary of photovoltaic parameters for state-of-the-art CsPbIBr₂ PSCs.

 Table S2. FWHM data of GO, An-GO and FA-GO.

Samples	FWHM		
GO	0.48		
An-GO	0.71		
FA-GO	0.71		

Device	$ au_1$	a_1	$ au_2$	a_2	$\tau_{ave}(\mathrm{ns})$
w/o GO	0.3244	24.75%	6.7256	75.25%	1.143
w GO	0.3081	38.92%	7.91688	61.08%	0.746
w An-GO	0.2719	48.88%	6.3677	51.12%	0.532
w FA-GO	0.1535	55.08%	3.7687	44.92%	0.269

 Table S3. TRPL decay parameters of various perovskite films.

References

- [S1] Y. You, W. Tian, M. Wang, F. Cao, H. Sun, L. Li, Adv. Mater. Interfaces 2020, 7, 2000537.
- [S2] Z. Chen, Q. Wang, Y. Xu, R. Zhou, L. Zhang, Y. Huang, L. Hu, M. Lyu, J. Zhu, ACS Appl. Mater. Interfaces, 2021, DOI: 10.1021/acsami.1c02377.
- [S3] J. Liu, Q. He, J. Bi, M. Lei, W. Zhang, G. Wang, Chem. Eng. 2021, J. DOI: 10.1016/j.cej.2021.130324.
- [S4] Y. Long, C. Wang, X. Liu, J. Wang, S. Fu, J. Zhang, Z. Hu, Y. Zhu, J. Mater. Chem. C, 2021,
 9, 2145.
- [S5] R. Wang, H. Zhang, S. Han, Y. Wu, Z. Hu, G. Zhang, H. Liu, Q. He, X. Zhang, New J. Chem., 2021, 45, 9243.
- [S6] Z. Zhang, D. Chen, W. Zhu, J. Ma, W. Chai, D. Chen, J. Zhang, C. Zhang, Y. Hao, Sci. China Mater. 2021, DOI: 10.1007/s40843-020-1618-x.
- [S7] B. Gao, J. Meng, ACS Appl. Energy Mater. 2020, 3, 8249-8256.
- [S8] W. Zhu, Z. Zhang, D. Chen, W. Chai, D. Chen, J. Zhang, C. Zhang, Y. Hao, Nano-Micro Lett. 2020, 12, 87.
- [S9] W. S. Subhani, K. Wang, M. Du, X. Wang, S. Liu, Adv. Energy Mater. 2019, 9, 1803785.
- [S10] W. Zhu, Z. Zhang, W. Chai, Q. Zhang, D. Chen, Z. Lin, J. Chang, J. Zhang, C. Zhang, Y. Hao, ChemSusChem 2019, 12, 2318-2325.
- [S11] W. Chen, D. Li, S. Chen, S. Liu, Y. Shen, G. Zeng, X. Zhu, E. Zhou, L. Jiang, Y. Li, Y. Li, Adv. Energy Mater. 2020, 10, 2000851.
- [S12] C. Zhang, K. Wang, Y. Wang, W. S. Subhani, X. Jiang, S. Wang, H. Bao, L. Liu, L. Wan, S. Liu, Solar RRL 2020, 4, 2000254.

- [S13] Z. Zhang, F. He, W. Zhu, D. Chen, W. Chai, D. Chen, H. Xi, J. Zhang, C. Zhang, Y. Hao, Sustainable Energy Fuels 2020, 4, 4506-4515.
- [S14] J. Bian, Y. Wu, W. Bi, L. Liu, X. Su, B. Zhang, Energy Fuels 2020, 34, 11472-11478.
- [S15] Y. Guo, X. Yin, M. Que, J. Zhang, S. Wen, D. Liu, H. Xie, W. Que, Organic Electron. 2020, 86, 105917.
- [S16] X. Yin, Y. Guo, J. Liu, W. Que, F. Ma, K. Xu, J. Phys. Chem. Lett. 2020, 11, 7035-7041.
- [S17] W. Zhu, Q. Zhang, C. Zhang, Z. Zhang, D. Chen, Z. Lin, J. Chang, J. Zhang, Y. Hao, ACS Appl. Energy Mater. 2018, 1, 4991-4997.