Supporting Information

Alternative anodes for Na-O₂ batteries: the case of the Sn₄P₃ alloy

Juan Luis Gómez-Cámer^{1,#}, Idoia Ruiz de Larramendi², Marina Enterría¹, Iñigo

Lozano^{1,2}, Begoña Acebedo¹, Domitille Bordeau¹, Nagore Ortiz-Vitoriano^{1,3*}

¹Center for Cooperative Research on Alternative Energies (CIC energiGUNE), Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Alava, Albert Einstein 48, 01510 Vitoria-Gasteiz, Spain.

²Departamento de Química Orgánica e Inorgánica, Universidad del País Vasco (UPV/EHU), P.O. Box 664, 48080 Bilbao, Spain.

³Ikerbasque, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain. [#]Present address: Dpto. Química Inorgánica e Ingeniería Química, Instituto de Química Fina y Nanoquímica IUNAN, Universidad de Córdoba, Campus Universitario de Rabanales, Edificio Marie Curie, 14071 Córdoba (Spain).

E-mail: nortiz@cicenergigune.com.

INDEX

Table S1	 Page 3
Figure S1	 Page 4
Figure S2	 Page 4
Figure S3	 Page 4
Figure S4	 Page 5
Figure S5	 Page 5
Figure S6	 Page 5
Figure S7	 Page 6
Figure S8	 Page 6
Figure S9	 Page 6
Figure S10	 Page 7
Figure S11	 Page 7
Figure S12	 Page 8
Figure S13	 Page 8
Figure S14	 Page 9
Figure S15	 Page 9

Synthesis	a	b	с	Avg. Crystallyte size (nm)	Rp (%)	Rwp (%)	Rexp (%)	Chi-2	Global user- weighted chi-2
A	3.975(2)	3.975(2)	35.4(2)	15.3 ± 0.2	13.5	20.2	17.5	1.32	1.46
В	3.9707(7)	3.9707(7)	35.37(9)	18.9 ± 0.3	15.1	23.2	17.2	1.83	1.90
С	3.971(1)	3.971(1)	35.4(1)	15.7 ± 0.2	14.4	28.2	24.0	1.39	1.50
D	3.971(3)	3.971(3)	35.4(3)	14.9 ± 0.1	15.4	23.6	19.4	1.48	1.56
E	3.975(3)	3.975(3)	35.4(2)	13.3 ± 0.2	14.2	21.7	18.2	1.42	1.50
F	3.974(3)	3.974(3)	35.4(3)	14.1 ± 0.1	13.3	20.0	17.3	1.33	1.45
G	3.972(3)	3.972(3)	35.4(3)	14.9 ± 0.2	14.6	21.7	18.6	1.36	1.48
Н	3.974(3)	3.974(3)	35.4(3)	14.4 ± 0.1	13.4	20.6	17.4	1.39	1.46
Ι	3.974(3)	3.974(3)	35.4(3)	14.4 ± 0.3	14.0	20.6	18.1	1.30	1.40

Table S1. Cell parameters and Figures of Merit of the Le Bail refinements of Sn_4P_3 materials synthesized by modified methods A to I.

Figure S1. The XRD pattern along with the Le Bail refinement of Sn₄P₃ (synthesis A).

Figure S2. SEM images of the Sn₄P₃ powder from the original synthesis A.

Figure S3. SEM images of the Sn_4P_3 powder from synthesis B.

Figure S4. SEM images of the Sn_4P_3 powder from synthesis C.

Figure S5. SEM images of the Sn_4P_3 powder from synthesis D.

Figure S6. SEM images of the Sn_4P_3 powder from synthesis E.

Figure S7. SEM images of the Sn_4P_3 powder from synthesis F.

Figure S8. SEM images of the Sn_4P_3 powder from synthesis G.

Figure S9. SEM images of the Sn₄P₃ powder from synthesis H.

Figure S10. SEM images of the Sn₄P₃ powder from synthesis I.

Figure S11. TEM image of the carbon coating resulting from the second milling step with Super C65 (synthesis A was used as a representative example to show carbon coating).

Figure S12. Galvanostatic charge-discharge curves of the five initial cycles of synthesis A cycled with 5 mV cut-off at 100 mA g^{-1} in a Na-ion battery. The dashed bar guides the eye to the limit of 50 mV.

Figure S13. Raman spectra of a) metallic Na and Sn_4P_3/C anodes and b) their respective carbon positive electrodes after the chemical stability which correspond to the SEM images in Figure 4.

Figure S14. XRD patterns of the cathode discharge with Sn_4P_3 alloy (a) and the corresponding anode (b); and the cathode discharge with Na metal anode (c).

Figure S15. Galvanostatic cycling of the alloy during EIS measurements of the Sn4P3/C//GDL cell.