Supporting Information

Synthesis of ruthenium-graphene quantum dot-graphene hybrid as promising single-atom catalyst for electrochemical nitrogen reduction with ultrahigh yield rate and selectivity

Li Ruiyi, He Keyang, Xu Pengwu, Wang Wendong, Li Nana, Zhu Haiyan, Li Zaijun and Liu Xiaohao t

Experimental Details

Ammonia determination

The ammonia concentration in electrolyte was detected by indophenol blue method. In a typical procedure, 2 mL of the electrolyte after nitrogen electrochemical reduction reaction was mixed with 2 mL of 1 M NaOH solution containing salicylic acid (5 wt%) and sodium citrate (5 wt%), added 1 mL of 0.05 M NaCIO and 0.2 mL of C₅FeN₆Na₂O (1 wt%). After that, the absorbance at 655nm was measured using an UV-vis spectrophotometer. The concentration-absorbance curve was calibrated using standard ammonia chloride solution with a serious of concentrations.

Hydrazine determination

The hydrazine in the electrolyte was measured by the method of Watt and Chrisp. Here, the mixture of para-(dimethylamino) benzaldehyde (0.62 g), HCl (12 mol L⁻¹, 4 mL), and ethanol (40 mL) was used as a color reagent. 2 mL of the electrolyte after electrolysis was mixed with 2 mL of color reagent. The absorbance at 455 nm was determined. The concentration-absorbance curve was calibrated using standard hydrazine hydrate solution with a serious of concentrations.

¹⁵N isotope labelling experiment

An isotopic labelling experiment used $^{15}N_2$ with the N15 enrichment of 99% as the feeding gas to clarify the source of NH₃. After $^{15}N_2$ electrochemical reduction for 2 h with 10 cycles, the electrolyte was concentrated into 10 mL, the obtained $^{15}NH_4^+$ was identified by using ^{1}H NMR spectroscopy (AVANCE III HD 400 MHz).

Figures and Tables

Fig. S1. XRD patterns of Ru-His-GQD-Ru (A) and Ru-graphene nanocomposite (B)

Fig. S2. Size distribution of the Ru particles in Ru-His-GQD-G

Fig. S3. Solid state fluorescence spectra of His-GQD, Ru-His-GQD and Ru-His-GQD-G

Fig. S4. The linear sweep voltametric curves of Ru-His-GQD-G electrode in Ar- or N_2 -saturated 0.05 M aqueous H_2SO_4 at a scan rate of 5 mV s⁻¹

Fig. S5. The FTIR spectrum of the electrolyte for Ru-His-GQD-G. The electrolyte was measured in N2-saturated 0.05 M H2SO4 at -0.05 V vs RHE for 12 h

Fig. S6A. UV-vis curves and (b) concentration-absorbance curve of NH₄⁺ ions solution with a series of standard concentration. The absorbance at 655 nm was measured by UV-vis spectrophotometer. B: The standard curve showed good linear relation of absorbance with NH₄⁺ ion concentration. C: Optical photographs of eight electrolytes prepared by NRR over Ru-His-GQD-G at different potentials for 2 h

Fig. S7. The UV-vis curves and optical photographs of five electrolytes produced by NRR over Ru-His-GQD-G at different potentials and 0.5μg mL⁻¹ N₂H₄·H₂O standard solution

Fig. S8 1 H NMR spectra of both NH₄ $^{+}$ and 15 NH₄ $^{+}$ produced from NRR using N₂ and 15 N₂ as the feeding gas

Fig. S9 Current density profile versus time under applied potential of -0.05 V (vs. RHE) over Ru-His-GQD-G electrode

Fig. S10 The HAADF-STEM image of Ru-His-GQD-G after N_2 electrochemical reduction reaction

Figu. S11 Optimized geometry of *H and reaction intermediates for NRR on Ru-His-GQD-G electrode

Fig. S12 Optimized geometry of *H and reaction intermediates for NRR on G-Ru electrode

Fig. S13 Calculation models and free energy diagrams for NRR of Ru-His-GQD-G electrode and G-Ru electrode

Table s1 EXAFS data fitting results of Ru foil and Ru-His-GQD-G*

Sample	Path	CN	R(Å)	$\sigma^2(\times 10^{-3} \text{Å}^2)$	ΔE ₀ (eV)	R factor (%)	
D C 1	Ru-Ru	12	2.6	0.0026	-	1.50	
Ru foil			7	1	7.767	%	
Ru-His-	Ru-N	2.0	2.1	0.01	1.93	1.60%	
GQD-G		1	3	1	1.93	1.0070	

^{*} The EXAFS spectra fits were performed on the first coordination shell over the FT of the k^3 -weighted $\chi(k)$ function in the $\Delta k=3$ -12 Å⁻¹ interval. The amplitude reduction factor S_0^2 was fixed to 0.98 relative to Ru foil. The CN represents average coordination number. R represents interatomic distance. σ^2 represents square variation in path length. ΔE_0 represents edge-energy shift. The R-factor represents the goodness of fit.

Table S2 Catalytic activities of various Ru-based materials for nitrogen electrochemical reduction into ammonia

Catalyst	Electrolyte	Potential Faradaic		N ₂ electrochemical	Ref.
		(V, vs.	Efficiency	reduction activity	
		RHE)	(%)	$(\mu \mathbf{g}_{NH_3} \cdot \boldsymbol{m} \boldsymbol{g}_{catalyst}^{-1}$	
				$\cdot h^{-1}$)	

Ru single atoms distributed	0.05 M H ₂ SO ₄	-0.2	29.6	120.9	1
on nitrogen-doped carbon					
Single Ru sites supported on	0.1 M HCl	-0.21	21	3.665	2
N-doped porous carbon and					
ZrO_2					
Ru single atoms distributed	0.5 M KOH	0.05	8.3	23	3
in a matrix of graphitic					
carbon nitride					
Fusiform-like Ru-Cu alloy	0.1 M HCl	-0.1	7.2	53.6	4
nanosheets					
Ru(III) polyethyleneimine	0.1 M KOH	-0.1	30.93	188.90	5
catalysts supported on					
carboxyl-modified carbon					
nanotubes					
Single-atomic ruthenium	0.5 M K ₂ SO ₄	-0.3	25.77	40.57	6
modified Mo ₂ CTX MXene					
nanosheets					
Ruthenium nanocrystals	0.05 M	-0.1	11	50	7
anchored on reduced	H_2SO_4				
graphene oxide modified					
with different aliphatic thiols					
to achieve M-S linkages					
Ru-His-GQD-G).05 M H2SO4	-0.05	42.6	226	Present
					work

References

- 1 Z.G. Geng, Y. Liu, X.D. Kong, P. Li, Z.Y. Liu, J.J. Du, M. Shu, R. Si, J. Zeng, *Adv. Mater.*, 2018, **30**, 1803498.
- 2 H.C. Tao, C. Choi, L.X. Ding, Z. Jiang, Z.S. Han, M.W. Jia, Q. Fan, Y.N. Gao, H.H. Wang, A.W. Robertson, S. Hong, Y. Jung, S.Z. Liu, Z.Y. Sun, Chem, 2019, 5, 204-219.
- 3 B. Yu, H. Li, J. White, S. Donne, J.B. Yi, S.B. Xi, Y. Fu, G. Henkelman, H. Yu, Z.L. Chen, T.Y. Ma, *Adv. Funct. Mater.*, 2019, **6**, 1905665.
- 4 Y. Jin, X. Ding, L.L. Zhang, M.Y. Cong, F.F. Xu, Y. Wei, S.J. Hao, Y. Gao, *Chem. Commun.*, 2020, **56**, 11477-11480.

- 5 G.R. Xu, M. Batmunkh, S. Donne, H.N. Jin, J.X. Jiang, Y. Chen, T.Y. Ma, *J. Mater. Chem. A*, 2019, **7**, 25433-25440.
- 6 W. Peng, M. Luo, X.D. Xu, K. Jiang, M. Peng, D.C. Chen, T.S. Chan, Y.W. Tan, *Adv Energy Mater.*, 2020, **10**, 2001364.
- 7 M.I. Ahmed, C.W. Liu, Y. Zhao, W.H. Ren, X.J. Chen, S. Chen, C. Zhao, *Angew. Chem.*, 2020, 59, 21465-21469.