Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2021

Stabilizing Orthorhombic CsSnI₃ Perovskites with Optimized Electronic Properties by Surface Ligands with Inter-Molecular Hydrogen Bond

Yapeng Zheng,^{a,b} Zhi Fang,^{a,b} Minghui Shang,^{b,c,*} Qian Sun,^{a,b} Jinju Zheng,^b Zuobao Yang,^b Xinmei Hou,^{a,*} and Weiyou Yang^{b,*}

^a Collaborative Innovation Center of Steel Technology, University of Science and Technology Beijing, Beijing 100083, P. R. China.

^b Institute of Materials, Ningbo University of Technology, Ningbo City 315211, P. R. China.

^c Graduate School of Advanced Integration Science, Chiba University, 1-33 Yayoi-cho, Inage,

Chiba 263-8522, Japan.

Figure S1. Molecular structures of different ligands.

Figure S2. The ESP of different ligands.

Figure S3. The passivated configurations with one AP⁺ ligand situated at adsorption sites I, II, III and IV, respectively.

Figure S4. The passivated configurations with one ABD⁺ ligand situated at adsorption sites I, II, III and IV, respectively.

Figure S5. The passivated configurations with one ABA⁺ ligand situated at adsorption sites I, II, III and IV, respectively.

Figure S6. The calculated E_{ads} and E_{form} of 4-AP⁺, 2-ABD⁺, 4-ABA⁺ configurations with 1/2 ML

coverage.

Figure S7. (a-b) The CDD between 4-AP⁺, 4-ABA⁺ configurations with 1/2 ML coverage and pristine slab, respectively. The red and cyan isosurfaces set as $0.004 \text{ e/}a_0^3$ indicate the charge accumulation and depletion region, respectively.

Figure S8. Structures of 4-AP⁺, 2-ABD⁺, 4-ABA⁺ configurations with 1 ML coverage.

Figure S9. (a-c) Orbital-resolved COHP of inter-molecular hydrogen bond of cross-I, II and III configurations, respectively. The fermi energy level was set as zero. (b) The bond length and absolute value of ICOHP of inter-molecular hydrogen bond for cross-I, II and III configurations.

Figure S10. (a) The calculated E_{form} of cross-x and nocross-x configurations. (b) The calculated Bader charges of H atoms linking with adjacent O atoms for cross-x and nocross-x configurations.

Figure S11. (a-d) Snapshots recorded at 0 and 5 ps of AIMD simulations for 2-ABD⁺ configuration with 1 ML coverage, cross-I, II and III configurations at 300 K, respectively.

Figure S12. (a-c) The fat-band and PDOS of 4-AP⁺ configuration with 1/2 ML coverage, 4-ABA⁺ configurations with 1/2 and 1 ML coverages, respectively.

Figure S13. (a-b) The averaged planar electrostatic potentials along z axis of 4-AP⁺ configurations with 1/2 and 1 ML coverages, respectively. (c-d) The averaged planar electrostatic potentials along z axis of 2-ABD⁺ configurations with 1/2 and 1 ML coverages, respectively. (e-f) The averaged planar electrostatic potentials along z axis of 4-ABA⁺ configurations with 1/2 and 1 ML coverages, respectively.

Figure S14. (a-b) The 3D band of 2-ABD⁺ configuration with 1 ML coverage and cross-II configuration, respectively.

Figure S15. (a-b) The charge densities of VBM and CBM for 2-ABD⁺ configuration with 1 ML coverage, respectively. (c-d) The charge densities of VBM and CBM for cross-II configuration, respectively. The isosurfaces are set as $0.0008 \text{ e/}a_0^3$.

Figure S16. The band gap and the corresponding P^2 at gamma point of passivated configurations extracted from Figure 4a.

Figure S17. Calculated optical adsorption spectra of pristine slab, 2-ABD⁺ configuration with 1 ML coverage and cross-II configuration.

Figure S18. (a) Schematic diagram on the apical and equator directions. (b) The average bond angle of Sn-I-Sn along apical and equator directions for passivated configurations.

Figure S19. The solar irradiance spectrum.

	Total (Å)	Ligands (Å)	Slab (Å)
$2-ABD^+$	1.59	2.73	0.62
cross-II	1.13	1.94	0.48

Table S1. The calculated RMSDs of total passivated configurations, ligands and slab for 2-ABD+ configuration with 1 ML coverage and cross-II configuration.

Table S2. The average I-Sn-I angle, Sn-I-Sn angle and Sn-I bond length for 2-ABD^+ configuration with 1 ML coverage and cross-II configuration after AIMD simulations and bulk γ -CsSnI₃.

	I-Sn-I (°)	Sn-I-Sn (°)	Sn-I (Å)
Bulk	179.98	170.12	3.118
$2-ABD^+$	168.34	165.34	3.169
cross-II	170.51	167.39	3.166

	$V_{ m oc}$ (V)	FF	$J_{\rm sc}~({\rm mA/cm^2})$	η (%)
Pristine Slab	0.474	0.796	35.72	13.5
$2-ABD^+$	0.426	0.78	44.46	14.8
cross-II	0.667	0.84	35.35	19.8

Table S3. Calculated *FF*, J_{sc} , V_{oc} and η of pristine slab and passivated configurations.